Net section fracture assessment of steel bolted joints with shear lag effect

Bolted connections are willingly used in steel structures because of their easiness of fabrication and assembly, but often they are the weakest component in the construction. In case of tensile lap connections, fracture of net cross section usually determines a joint capacity. Additionally, possible...

Full description

Bibliographic Details
Main Authors: Bernatowska Edyta, Ślęczka Lucjan
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2019/11/matecconf_krynica2018_09002.pdf
Description
Summary:Bolted connections are willingly used in steel structures because of their easiness of fabrication and assembly, but often they are the weakest component in the construction. In case of tensile lap connections, fracture of net cross section usually determines a joint capacity. Additionally, possible eccentricities can affect the distribution of stresses in the cross section and hence its load capacity. Analysis of fracture is a completely different issue compared to well-known and established problems of stability or plastic resistance. Paper relates to steel angle tension members connected by one bolt. It starts from the description of experimental investigations which results were used for hierarchical validation of computational models. Choice between two types of material models (elastic-plastic and Gurson–Tvergaard–Needleman) and building of FE models, representing different degrees of complexity, were described. Paper ends with parametric study taking into account influence of the edge distance from the centre of a fastener hole to the adjacent edge of angle. The paper’s aim is to verify and present the methodology for fracture prediction in steel angle tension members, which can be next extended for bolted joints with larger number of bolts and different geometrical configurations.
ISSN:2261-236X