Simple methods of engineering calculation for solving heat transfer problems

There are well‐known numerical methods for solving the initial‐boundary value problems for partial differential equations. We mention only some of them: finite difference method (FDM), finite element method (FEM), boundary element method (BEM), Galerkin type methods and others. In the given work FD...

Full description

Bibliographic Details
Main Authors: H. Kalis, I. Kangro
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2003-03-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9760
id doaj-e78c975b99294ca9a9e9bb326711bdc2
record_format Article
spelling doaj-e78c975b99294ca9a9e9bb326711bdc22021-07-02T10:07:39ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102003-03-018110.3846/13926292.2003.9637208Simple methods of engineering calculation for solving heat transfer problemsH. Kalis0I. Kangro1Institute of Mathematics , Latvian Academy of Sciences and University of Latvia , Akadēmijas laukums 1, Riga, LV‐1524, LatviaDepartament of engineering science , Rezekne Higher Education Institution , Atbrivosanas aleja 90, Rēzekne, LV‐4601, Latvija There are well‐known numerical methods for solving the initial‐boundary value problems for partial differential equations. We mention only some of them: finite difference method (FDM), finite element method (FEM), boundary element method (BEM), Galerkin type methods and others. In the given work FDM and BEM are considered for determination a distribution of heat in the multilayer media. These methods were used for the reduction of the 1D heat transfer problem described by a partial differential equation to an initial‐value problem for a system of ordinary differential equations (ODEs). Such a procedure allows us to obtain a simple engineering algorithm for solving heat transfer equation in multilayered domain. In a stationary case the exact finite difference scheme is obtained. An inverse problem is also solved. The heat transfer coefficients are found and temperatures in the interior layers depending on the given temperatures inside and outside of a domain are obtained. Paprastieji inžinerinio skaičiaimo metodai šilumos laidumo uždaviniams spręsti Santrauka Darbe nagrinejami du ‐ baigtiniu skirtumu ir kraštiniu elementu ‐ metodai šilumos pasiskirstymo daugiasluoksneje aplinkoje uždaviniams spresti. Šiais metodais dvieju kintamuju uždavinys dalinemis išvestinemis pakeičiamas pradiniu ‐ kraštiniu paprastuju diferencialiniu lygčiu sistemos uždaviniu. Tokia procedūra suteikia galimybe gauti paprastus inžinerinius algoritmus, skirtus spresti šilumos laidumo lygti daugiasluoksneje srityje. Stacionariu atveju imanoma nustatyti tikslu skirtumu schemos sprendini. Darbe nagrinetas atvirkščias uždavinys. Skaitinio eksperimento metu gauti šilumos laidumo koeficientai ir temperatūros vidiniuose sluoksniuose priklausomai nuo išoriniu plokštes duomenu. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9760transfer problemsinitial‐boundary value problemspartial differential equationsfinite difference methodfinite element method
collection DOAJ
language English
format Article
sources DOAJ
author H. Kalis
I. Kangro
spellingShingle H. Kalis
I. Kangro
Simple methods of engineering calculation for solving heat transfer problems
Mathematical Modelling and Analysis
transfer problems
initial‐boundary value problems
partial differential equations
finite difference method
finite element method
author_facet H. Kalis
I. Kangro
author_sort H. Kalis
title Simple methods of engineering calculation for solving heat transfer problems
title_short Simple methods of engineering calculation for solving heat transfer problems
title_full Simple methods of engineering calculation for solving heat transfer problems
title_fullStr Simple methods of engineering calculation for solving heat transfer problems
title_full_unstemmed Simple methods of engineering calculation for solving heat transfer problems
title_sort simple methods of engineering calculation for solving heat transfer problems
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2003-03-01
description There are well‐known numerical methods for solving the initial‐boundary value problems for partial differential equations. We mention only some of them: finite difference method (FDM), finite element method (FEM), boundary element method (BEM), Galerkin type methods and others. In the given work FDM and BEM are considered for determination a distribution of heat in the multilayer media. These methods were used for the reduction of the 1D heat transfer problem described by a partial differential equation to an initial‐value problem for a system of ordinary differential equations (ODEs). Such a procedure allows us to obtain a simple engineering algorithm for solving heat transfer equation in multilayered domain. In a stationary case the exact finite difference scheme is obtained. An inverse problem is also solved. The heat transfer coefficients are found and temperatures in the interior layers depending on the given temperatures inside and outside of a domain are obtained. Paprastieji inžinerinio skaičiaimo metodai šilumos laidumo uždaviniams spręsti Santrauka Darbe nagrinejami du ‐ baigtiniu skirtumu ir kraštiniu elementu ‐ metodai šilumos pasiskirstymo daugiasluoksneje aplinkoje uždaviniams spresti. Šiais metodais dvieju kintamuju uždavinys dalinemis išvestinemis pakeičiamas pradiniu ‐ kraštiniu paprastuju diferencialiniu lygčiu sistemos uždaviniu. Tokia procedūra suteikia galimybe gauti paprastus inžinerinius algoritmus, skirtus spresti šilumos laidumo lygti daugiasluoksneje srityje. Stacionariu atveju imanoma nustatyti tikslu skirtumu schemos sprendini. Darbe nagrinetas atvirkščias uždavinys. Skaitinio eksperimento metu gauti šilumos laidumo koeficientai ir temperatūros vidiniuose sluoksniuose priklausomai nuo išoriniu plokštes duomenu. First Published Online: 14 Oct 2010
topic transfer problems
initial‐boundary value problems
partial differential equations
finite difference method
finite element method
url https://journals.vgtu.lt/index.php/MMA/article/view/9760
work_keys_str_mv AT hkalis simplemethodsofengineeringcalculationforsolvingheattransferproblems
AT ikangro simplemethodsofengineeringcalculationforsolvingheattransferproblems
_version_ 1721332388988977152