Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford Coordinates

This paper presents a novel approach to the cosmological constant problem by the use of the Clifford algebras of space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><...

Full description

Bibliographic Details
Main Author: Alexander Kritov
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/3/366
id doaj-e738a5851451450babe24e9f13a91c11
record_format Article
spelling doaj-e738a5851451450babe24e9f13a91c112021-02-25T00:05:25ZengMDPI AGSymmetry2073-89942021-02-011336636610.3390/sym13030366Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford CoordinatesAlexander Kritov0Moscow Kolmogorov School of Physics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, RussiaThis paper presents a novel approach to the cosmological constant problem by the use of the Clifford algebras of space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>3</mn><mo>,</mo><mn>0</mn></mrow></msub></mrow></semantics></math></inline-formula> and anti-space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>0</mn><mo>,</mo><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula> with a particular focus on the paravector representation, emphasizing the fact that both algebras have a center represented just by two coordinates. Since the paravector representation allows assigning the scalar element of grade 0 to the time coordinate, we consider the relativity in such two-dimensional spacetime for a uniformly accelerated frame with the constant acceleration <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><msub><mi>H</mi><mn>0</mn></msub><mi>c</mi></mrow></semantics></math></inline-formula>. Using the Rindler coordinate transformations in two-dimensional spacetime and then applying it to Minkowski coordinates, we obtain the FLRW metric, which in the case of the Clifford algebra of space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>3</mn><mo>,</mo><mn>0</mn></mrow></msub></mrow></semantics></math></inline-formula> corresponds to the anti-de Sitter (AdS) flat (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) case, the negative cosmological term and an oscillating model of the universe. The approach with anti-Euclidean Clifford algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>0</mn><mo>,</mo><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula> leads to the de Sitter model with the positive cosmological term and the exact form of the scale factor used in modern cosmology.https://www.mdpi.com/2073-8994/13/3/366cosmological constant problemClifford algebrasCl(3,0)Cl(0,3)two-dimensional spacetimetime-volume coordinates
collection DOAJ
language English
format Article
sources DOAJ
author Alexander Kritov
spellingShingle Alexander Kritov
Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford Coordinates
Symmetry
cosmological constant problem
Clifford algebras
Cl(3,0)
Cl(0,3)
two-dimensional spacetime
time-volume coordinates
author_facet Alexander Kritov
author_sort Alexander Kritov
title Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford Coordinates
title_short Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford Coordinates
title_full Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford Coordinates
title_fullStr Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford Coordinates
title_full_unstemmed Gravitation with Cosmological Term, Expansion of the Universe as Uniform Acceleration in Clifford Coordinates
title_sort gravitation with cosmological term, expansion of the universe as uniform acceleration in clifford coordinates
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-02-01
description This paper presents a novel approach to the cosmological constant problem by the use of the Clifford algebras of space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>3</mn><mo>,</mo><mn>0</mn></mrow></msub></mrow></semantics></math></inline-formula> and anti-space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>0</mn><mo>,</mo><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula> with a particular focus on the paravector representation, emphasizing the fact that both algebras have a center represented just by two coordinates. Since the paravector representation allows assigning the scalar element of grade 0 to the time coordinate, we consider the relativity in such two-dimensional spacetime for a uniformly accelerated frame with the constant acceleration <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><msub><mi>H</mi><mn>0</mn></msub><mi>c</mi></mrow></semantics></math></inline-formula>. Using the Rindler coordinate transformations in two-dimensional spacetime and then applying it to Minkowski coordinates, we obtain the FLRW metric, which in the case of the Clifford algebra of space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>3</mn><mo>,</mo><mn>0</mn></mrow></msub></mrow></semantics></math></inline-formula> corresponds to the anti-de Sitter (AdS) flat (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) case, the negative cosmological term and an oscillating model of the universe. The approach with anti-Euclidean Clifford algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>l</mi><mrow><mn>0</mn><mo>,</mo><mn>3</mn></mrow></msub></mrow></semantics></math></inline-formula> leads to the de Sitter model with the positive cosmological term and the exact form of the scale factor used in modern cosmology.
topic cosmological constant problem
Clifford algebras
Cl(3,0)
Cl(0,3)
two-dimensional spacetime
time-volume coordinates
url https://www.mdpi.com/2073-8994/13/3/366
work_keys_str_mv AT alexanderkritov gravitationwithcosmologicaltermexpansionoftheuniverseasuniformaccelerationincliffordcoordinates
_version_ 1724252240753983488