Analysis of Distributed Wireless Sensor Systems with a Switched Quantizer

In this article, a switched quantizer is proposed to solve the bandwidth limitation application problem for distributed wireless sensor networks (WSNs). The proposed estimator based on switched quantitative event-triggered Kalman consensus filtering (KCF) algorithm is used to monitor the aircraft ca...

Full description

Bibliographic Details
Main Authors: Hui Sun, Xianyu Wang, Kaixin Yang, Tongrui Peng
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/6690761
Description
Summary:In this article, a switched quantizer is proposed to solve the bandwidth limitation application problem for distributed wireless sensor networks (WSNs). The proposed estimator based on switched quantitative event-triggered Kalman consensus filtering (KCF) algorithm is used to monitor the aircraft cabin environmental parameters when suffering packet loss and path loss issues during the communication process for WSN. The quantization error of the novel switched quantizer structure is bounded, and the corresponding stability theory for the quantitative estimation approach is proved. Compared with other methods, the simulation results for the introduced method verify that the environmental parameters can be estimated accurately and timely and reduce the burden of network communication bandwidth.
ISSN:1099-0526