Summary: | This study investigates morphological differences between flakes produced via "core and flake" technologies and those resulting from bifacial shaping strategies. We investigate systematic variation between two technological groups of flakes using experimentally produced assemblages, and then apply the experimental model to the Cutting 10 Mid -Pleistocene archaeological collection from Elandsfontein, South Africa. We argue that a specific set of independent variables--and their interactions--including external platform angle, platform depth, measures of thickness variance and flake curvature should distinguish between these two technological groups. The role of these variables in technological group separation was further investigated using the Generalized Linear Model as well as Linear Discriminant Analysis. The Discriminant model was used to classify archaeological flakes from the Cutting 10 locality in terms of their probability of association, within either experimentally developed technological group. The results indicate that the selected independent variables play a central role in separating core and flake from bifacial technologies. Thickness evenness and curvature had the greatest effect sizes in both the Generalized Linear and Discriminant models. Interestingly the interaction between thickness evenness and platform depth was significant and played an important role in influencing technological group membership. The identified interaction emphasizes the complexity in attempting to distinguish flake production strategies based on flake morphological attributes. The results of the discriminant function analysis demonstrate that the majority of flakes at the Cutting 10 locality were not associated with the production of the numerous Large Cutting Tools found at the site, which corresponds with previous suggestions regarding technological behaviors reflected in this assemblage.
|