Fixed points for some non-obviously contractive operators defined in a space of continuous functions

Let $X$ be an arbitrary (real or complex) Banach space, endowed with the norm $\left| \cdot \right| .$ Consider the space of the continuous functions $C\left( \left[ 0,T\right] ,X\right) $ $\left( T>0\right) $, endowed with the usual topology, and let $M$ be a closed subset of it. One proves that...

Full description

Bibliographic Details
Main Authors: C. Avramescu, Cristian Vladimirescu
Format: Article
Language:English
Published: University of Szeged 2004-02-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=177