Fixed points for some non-obviously contractive operators defined in a space of continuous functions
Let $X$ be an arbitrary (real or complex) Banach space, endowed with the norm $\left| \cdot \right| .$ Consider the space of the continuous functions $C\left( \left[ 0,T\right] ,X\right) $ $\left( T>0\right) $, endowed with the usual topology, and let $M$ be a closed subset of it. One proves that...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2004-02-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=177 |