Natural axion model from flavour

Abstract We explore a common symmetrical origin for two long standing problems in particle physics: the strong CP and the fermion mass hierarchy problems. The Peccei-Quinn mechanism solves the former one with an anomalous global U(1)PQ symmetry. Here we investigate how this U(1)PQ could at the same...

Full description

Bibliographic Details
Main Authors: Salvador Centelles Chuliá, Christian Döring, Werner Rodejohann, Ulises J. Saldaña-Salazar
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP09(2020)137
Description
Summary:Abstract We explore a common symmetrical origin for two long standing problems in particle physics: the strong CP and the fermion mass hierarchy problems. The Peccei-Quinn mechanism solves the former one with an anomalous global U(1)PQ symmetry. Here we investigate how this U(1)PQ could at the same time explain the fermion mass hierarchy. We work in the context of a four-Higgs-doublet model which explains all quark and charged fermion masses with natural, i.e. order 1, Yukawa couplings. Moreover, the axion of the model constitutes a viable dark matter candidate and neutrino masses are incorporated via the standard type-I seesaw mechanism. A simple extension of the model allows for Dirac neutrinos.
ISSN:1029-8479