Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction
Muscle contraction results from cyclic interactions between myosin II motors and actin with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other proteins, some...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/21/21/8399 |
id |
doaj-e6ed928488d0418dac7879a1baf89c3b |
---|---|
record_format |
Article |
spelling |
doaj-e6ed928488d0418dac7879a1baf89c3b2020-11-25T04:05:07ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672020-11-01218399839910.3390/ijms21218399Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric ContractionAlf Månsson0Department of Chemistry and Biomedical Sciences, Linnaeus University, Universitetskajen, 391 82 Kalmar, SwedenMuscle contraction results from cyclic interactions between myosin II motors and actin with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other proteins, some with important roles in muscle contraction. In particular, these include thin filament proteins, troponin and tropomyosin; thick filament proteins, myosin binding protein C; and the elastic protein, titin, that connects the thin and thick filaments. Furthermore, the order and 3D organization of the myofilament lattice may be important per se for contractile function. It is possible to model muscle contraction based on actin and myosin alone with properties derived in studies using single molecules and biochemical solution kinetics. It is also possible to reproduce several features of muscle contraction in experiments using only isolated actin and myosin, arguing against the importance of order and accessory proteins. Therefore, in this paper, it is hypothesized that “single molecule actomyosin properties account for the contractile properties of a half sarcomere during shortening and isometric contraction at almost saturating Ca concentrations”. In this paper, existing evidence for and against this hypothesis is reviewed and new modeling results to support the arguments are presented. Finally, further experimental tests are proposed, which if they corroborate, at least approximately, the hypothesis, should significantly benefit future effective analysis of a range of experimental studies, as well as drug discovery efforts.https://www.mdpi.com/1422-0067/21/21/8399myosinactinsingle moleculesensemblesmuscle contractionsarcomeres |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alf Månsson |
spellingShingle |
Alf Månsson Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction International Journal of Molecular Sciences myosin actin single molecules ensembles muscle contraction sarcomeres |
author_facet |
Alf Månsson |
author_sort |
Alf Månsson |
title |
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction |
title_short |
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction |
title_full |
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction |
title_fullStr |
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction |
title_full_unstemmed |
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction |
title_sort |
hypothesis: single actomyosin properties account for ensemble behavior in active muscle shortening and isometric contraction |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1661-6596 1422-0067 |
publishDate |
2020-11-01 |
description |
Muscle contraction results from cyclic interactions between myosin II motors and actin with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other proteins, some with important roles in muscle contraction. In particular, these include thin filament proteins, troponin and tropomyosin; thick filament proteins, myosin binding protein C; and the elastic protein, titin, that connects the thin and thick filaments. Furthermore, the order and 3D organization of the myofilament lattice may be important per se for contractile function. It is possible to model muscle contraction based on actin and myosin alone with properties derived in studies using single molecules and biochemical solution kinetics. It is also possible to reproduce several features of muscle contraction in experiments using only isolated actin and myosin, arguing against the importance of order and accessory proteins. Therefore, in this paper, it is hypothesized that “single molecule actomyosin properties account for the contractile properties of a half sarcomere during shortening and isometric contraction at almost saturating Ca concentrations”. In this paper, existing evidence for and against this hypothesis is reviewed and new modeling results to support the arguments are presented. Finally, further experimental tests are proposed, which if they corroborate, at least approximately, the hypothesis, should significantly benefit future effective analysis of a range of experimental studies, as well as drug discovery efforts. |
topic |
myosin actin single molecules ensembles muscle contraction sarcomeres |
url |
https://www.mdpi.com/1422-0067/21/21/8399 |
work_keys_str_mv |
AT alfmansson hypothesissingleactomyosinpropertiesaccountforensemblebehaviorinactivemuscleshorteningandisometriccontraction |
_version_ |
1724435306660233216 |