Experimentally Demonstrate the Spin-1 Information Entropic Inequality Based on Simulated Photonic Qutrit States

Quantum correlations of higher-dimensional systems are an important content of quantum information theory and quantum information application. The quantification of quantum correlation of high-dimensional quantum systems is crucial, but difficult. In this paper, using the second-order nonlinear opti...

Full description

Bibliographic Details
Main Authors: Lianzhen Cao, Xia Liu, Yang Yang, Qinwei Zhang, Jiaqiang Zhao, Huaixin Lu
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/2/219
Description
Summary:Quantum correlations of higher-dimensional systems are an important content of quantum information theory and quantum information application. The quantification of quantum correlation of high-dimensional quantum systems is crucial, but difficult. In this paper, using the second-order nonlinear optical effect and multiphoton interference enhancement effect, we experimentally implement the photonic qutrit states and demonstrate the spin-1 information entropic inequality for the first time to quantitative quantum correlation. Our work shows that information entropy is an important way to quantify quantum correlation and quantum information processing.
ISSN:1099-4300