The four-loop cusp anomalous dimension from the N=4 Sudakov form factor
We present an analytic derivation of the full four-loop cusp anomalous dimension of N=4 supersymmetric Yang-Mills theory from the Sudakov form factor. To extract the cusp anomalous dimension, we calculate the ϵ−2 pole of the form factor using parametric integrations of finite integrals. We provide u...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-08-01
|
Series: | Physics Letters B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269320303476 |
id |
doaj-e6cbdca0cbf343a8808ada6b05a08b4b |
---|---|
record_format |
Article |
spelling |
doaj-e6cbdca0cbf343a8808ada6b05a08b4b2020-11-25T03:39:12ZengElsevierPhysics Letters B0370-26932020-08-01807135543The four-loop cusp anomalous dimension from the N=4 Sudakov form factorTobias Huber0Andreas von Manteuffel1Erik Panzer2Robert M. Schabinger3Gang Yang4Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, GermanyDepartment of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA; Corresponding author.All Souls College, University of Oxford, OX1 4AL, Oxford, UKDepartment of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USACAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, ChinaWe present an analytic derivation of the full four-loop cusp anomalous dimension of N=4 supersymmetric Yang-Mills theory from the Sudakov form factor. To extract the cusp anomalous dimension, we calculate the ϵ−2 pole of the form factor using parametric integrations of finite integrals. We provide uniformly transcendental results for the master integrals through to weight six and confirm a very recent independent analytic result for the full four-loop cusp anomalous dimension of the N=4 model.http://www.sciencedirect.com/science/article/pii/S0370269320303476 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tobias Huber Andreas von Manteuffel Erik Panzer Robert M. Schabinger Gang Yang |
spellingShingle |
Tobias Huber Andreas von Manteuffel Erik Panzer Robert M. Schabinger Gang Yang The four-loop cusp anomalous dimension from the N=4 Sudakov form factor Physics Letters B |
author_facet |
Tobias Huber Andreas von Manteuffel Erik Panzer Robert M. Schabinger Gang Yang |
author_sort |
Tobias Huber |
title |
The four-loop cusp anomalous dimension from the N=4 Sudakov form factor |
title_short |
The four-loop cusp anomalous dimension from the N=4 Sudakov form factor |
title_full |
The four-loop cusp anomalous dimension from the N=4 Sudakov form factor |
title_fullStr |
The four-loop cusp anomalous dimension from the N=4 Sudakov form factor |
title_full_unstemmed |
The four-loop cusp anomalous dimension from the N=4 Sudakov form factor |
title_sort |
four-loop cusp anomalous dimension from the n=4 sudakov form factor |
publisher |
Elsevier |
series |
Physics Letters B |
issn |
0370-2693 |
publishDate |
2020-08-01 |
description |
We present an analytic derivation of the full four-loop cusp anomalous dimension of N=4 supersymmetric Yang-Mills theory from the Sudakov form factor. To extract the cusp anomalous dimension, we calculate the ϵ−2 pole of the form factor using parametric integrations of finite integrals. We provide uniformly transcendental results for the master integrals through to weight six and confirm a very recent independent analytic result for the full four-loop cusp anomalous dimension of the N=4 model. |
url |
http://www.sciencedirect.com/science/article/pii/S0370269320303476 |
work_keys_str_mv |
AT tobiashuber thefourloopcuspanomalousdimensionfromthen4sudakovformfactor AT andreasvonmanteuffel thefourloopcuspanomalousdimensionfromthen4sudakovformfactor AT erikpanzer thefourloopcuspanomalousdimensionfromthen4sudakovformfactor AT robertmschabinger thefourloopcuspanomalousdimensionfromthen4sudakovformfactor AT gangyang thefourloopcuspanomalousdimensionfromthen4sudakovformfactor AT tobiashuber fourloopcuspanomalousdimensionfromthen4sudakovformfactor AT andreasvonmanteuffel fourloopcuspanomalousdimensionfromthen4sudakovformfactor AT erikpanzer fourloopcuspanomalousdimensionfromthen4sudakovformfactor AT robertmschabinger fourloopcuspanomalousdimensionfromthen4sudakovformfactor AT gangyang fourloopcuspanomalousdimensionfromthen4sudakovformfactor |
_version_ |
1724540323622813696 |