Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis
Rubber trees are economically important tropical tree species and the major source of natural rubber, which is an essential industrial material. This tropical perennial tree is susceptible to cold stress and other abiotic stresses, especially in the marginal northern tropics. Recent years, the genom...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2016-11-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fpls.2016.01703/full |
id |
doaj-e6bd9bd93c6c4450961f7da5d1108f3b |
---|---|
record_format |
Article |
spelling |
doaj-e6bd9bd93c6c4450961f7da5d1108f3b2020-11-24T21:35:35ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2016-11-01710.3389/fpls.2016.01703224623Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in ArabidopsisHan Cheng0Xiang Chen1Jianshun Zhu2Huasun Huang3Chinese Academy of Tropical Agricultural ScienceChinese Academy of Tropical Agricultural ScienceChinese Academy of Tropical Agricultural ScienceChinese Academy of Tropical Agricultural ScienceRubber trees are economically important tropical tree species and the major source of natural rubber, which is an essential industrial material. This tropical perennial tree is susceptible to cold stress and other abiotic stresses, especially in the marginal northern tropics. Recent years, the genome sequencing and RNA-seq projects produced huge amount of sequence data, which greatly facilitated the functional genomics study. However, the characterization of individual functional gene is in urgent demands, especially for those involved in stress resistance. Here we identified and characterized the rubber tree gene ErbB-3 binding protein 1, which undergoes changes in expression in response to cold, drought stress and ABA treatment. HbEBP1 overexpression in Arabidopsis increased organ size, facilitated root growth and increased adult leaf number by delaying the vegetative-to-reproductive transition. In addition, HbEBP1 overexpression enhanced the resistance of the Arabidopsis plants to freezing and drought stress, demonstrating that this gene participates in the regulation of abiotic stress resistance. RD29a, RD22 and CYCD3;1 expression was also greatly enhanced by HbEBP1 overexpression, which explains its regulatory roles in organ size and stress resistance. The regulation of drought stress resistance is a novel function identified in plant EBP1 genes, which expands our understanding of the roles of EBP1 gene in response to the environment. Our results provide information that may lead to the use of HbEBP1 in genetically engineered crops to increase both biomass and abiotic stress resistance.http://journal.frontiersin.org/Journal/10.3389/fpls.2016.01703/fullArabidopsiscold stressDrought stressHevea brasiliensisErbB-3 Binding Protein 1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Han Cheng Xiang Chen Jianshun Zhu Huasun Huang |
spellingShingle |
Han Cheng Xiang Chen Jianshun Zhu Huasun Huang Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis Frontiers in Plant Science Arabidopsis cold stress Drought stress Hevea brasiliensis ErbB-3 Binding Protein 1 |
author_facet |
Han Cheng Xiang Chen Jianshun Zhu Huasun Huang |
author_sort |
Han Cheng |
title |
Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis |
title_short |
Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis |
title_full |
Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis |
title_fullStr |
Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis |
title_full_unstemmed |
Overexpression of a Hevea brasiliensis ErbB-3 binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis |
title_sort |
overexpression of a hevea brasiliensis erbb-3 binding protein 1 gene increases drought tolerance and organ size in arabidopsis |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Plant Science |
issn |
1664-462X |
publishDate |
2016-11-01 |
description |
Rubber trees are economically important tropical tree species and the major source of natural rubber, which is an essential industrial material. This tropical perennial tree is susceptible to cold stress and other abiotic stresses, especially in the marginal northern tropics. Recent years, the genome sequencing and RNA-seq projects produced huge amount of sequence data, which greatly facilitated the functional genomics study. However, the characterization of individual functional gene is in urgent demands, especially for those involved in stress resistance. Here we identified and characterized the rubber tree gene ErbB-3 binding protein 1, which undergoes changes in expression in response to cold, drought stress and ABA treatment. HbEBP1 overexpression in Arabidopsis increased organ size, facilitated root growth and increased adult leaf number by delaying the vegetative-to-reproductive transition. In addition, HbEBP1 overexpression enhanced the resistance of the Arabidopsis plants to freezing and drought stress, demonstrating that this gene participates in the regulation of abiotic stress resistance. RD29a, RD22 and CYCD3;1 expression was also greatly enhanced by HbEBP1 overexpression, which explains its regulatory roles in organ size and stress resistance. The regulation of drought stress resistance is a novel function identified in plant EBP1 genes, which expands our understanding of the roles of EBP1 gene in response to the environment. Our results provide information that may lead to the use of HbEBP1 in genetically engineered crops to increase both biomass and abiotic stress resistance. |
topic |
Arabidopsis cold stress Drought stress Hevea brasiliensis ErbB-3 Binding Protein 1 |
url |
http://journal.frontiersin.org/Journal/10.3389/fpls.2016.01703/full |
work_keys_str_mv |
AT hancheng overexpressionofaheveabrasiliensiserbb3bindingprotein1geneincreasesdroughttoleranceandorgansizeinarabidopsis AT xiangchen overexpressionofaheveabrasiliensiserbb3bindingprotein1geneincreasesdroughttoleranceandorgansizeinarabidopsis AT jianshunzhu overexpressionofaheveabrasiliensiserbb3bindingprotein1geneincreasesdroughttoleranceandorgansizeinarabidopsis AT huasunhuang overexpressionofaheveabrasiliensiserbb3bindingprotein1geneincreasesdroughttoleranceandorgansizeinarabidopsis |
_version_ |
1725945083025424384 |