Summary: | Analyzing radar signals is a critical task in modern Electronic Warfare (EW) environments. However, the pulse streams emitted by radars have flexible features and complex patterns which are difficult to be identified from a statistical perspective. To solve this problem, pulse repetition interval (PRI) is used as a distinguishing parameter of emitters to be identified. However, traditional PRI modulation recognition methods can only deal with simple PRI modulations and their performance will further degrade with the increasing number of emitters or noisy environments. In this paper, we introduce an attention-based recognition framework based on recurrent neural network (RNN) to categorize pulse streams with complex PRI modulations and in environments with high ratios of missing and spurious pulses. Simulation results show that our model is robust to noisy environments and has a better performance than conventional methods.
|