Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin
To evaluate debonding mechanism of zirconia and lithium disilicate cemented to dentin mimicking what could occur in a clinical setting. A null hypothesis of no difference in tensile bond strength between groups of zirconia and lithium disilicate cemented with resin cements was also tested. Zirconia...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2019-01-01
|
Series: | Acta Biomaterialia Odontologica Scandinavica |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/23337931.2018.1561188 |
id |
doaj-e69d9997496c48d988cacb0d376858e1 |
---|---|
record_format |
Article |
spelling |
doaj-e69d9997496c48d988cacb0d376858e12021-02-02T07:26:27ZengTaylor & Francis GroupActa Biomaterialia Odontologica Scandinavica2333-79312019-01-0151222910.1080/23337931.2018.15611881561188Debonding mechanism of zirconia and lithium disilicate resin cemented to dentinMina Aker Sagen0Ketil Kvam1Eystein Ivar Ruyter2Hans Jacob Rønold3University of OsloNIOMNIOMUniversity of OsloTo evaluate debonding mechanism of zirconia and lithium disilicate cemented to dentin mimicking what could occur in a clinical setting. A null hypothesis of no difference in tensile bond strength between groups of zirconia and lithium disilicate cemented with resin cements was also tested. Zirconia rods (n = 100) were randomly assigned to two different surface treatment groups; air borne particle abrasion and hot etching by potassium hydrogen difluoride (KHF2). Lithium disilicate rods (n = 50) were surface etched by hydrofluoric acid (HF). Five different dual cure resin cements were used for cementing rods to bovine dentin. Ten rods of each test group were cemented with each cement. Test specimens were thermocycled before tensile bond strength testing. Fracture morphology was visualized by light microscope. Mean surface roughness (Sa value) was calculated for randomly selected rods. Cohesive fracture in cement was the most frequent observed fracture morphology. Combination of adhesive and cohesive fractures were second most common. Fracture characterized as an adhesive between rod and cement was not observed for KHF2 etched zirconia. Highest mean tensile bond strength was observed when cementing air borne particle abraded zirconia with Variolink Esthetic (Ivoclar Vivadent). All surface treatments resulted in Sa values that were significant different from each other. The number of cohesive cement fractures observed suggested that the cement was the weakest link in bonding of zirconia and lithium disilicate.http://dx.doi.org/10.1080/23337931.2018.1561188Zirconiaceramicsresin cement |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mina Aker Sagen Ketil Kvam Eystein Ivar Ruyter Hans Jacob Rønold |
spellingShingle |
Mina Aker Sagen Ketil Kvam Eystein Ivar Ruyter Hans Jacob Rønold Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin Acta Biomaterialia Odontologica Scandinavica Zirconia ceramics resin cement |
author_facet |
Mina Aker Sagen Ketil Kvam Eystein Ivar Ruyter Hans Jacob Rønold |
author_sort |
Mina Aker Sagen |
title |
Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin |
title_short |
Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin |
title_full |
Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin |
title_fullStr |
Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin |
title_full_unstemmed |
Debonding mechanism of zirconia and lithium disilicate resin cemented to dentin |
title_sort |
debonding mechanism of zirconia and lithium disilicate resin cemented to dentin |
publisher |
Taylor & Francis Group |
series |
Acta Biomaterialia Odontologica Scandinavica |
issn |
2333-7931 |
publishDate |
2019-01-01 |
description |
To evaluate debonding mechanism of zirconia and lithium disilicate cemented to dentin mimicking what could occur in a clinical setting. A null hypothesis of no difference in tensile bond strength between groups of zirconia and lithium disilicate cemented with resin cements was also tested. Zirconia rods (n = 100) were randomly assigned to two different surface treatment groups; air borne particle abrasion and hot etching by potassium hydrogen difluoride (KHF2). Lithium disilicate rods (n = 50) were surface etched by hydrofluoric acid (HF). Five different dual cure resin cements were used for cementing rods to bovine dentin. Ten rods of each test group were cemented with each cement. Test specimens were thermocycled before tensile bond strength testing. Fracture morphology was visualized by light microscope. Mean surface roughness (Sa value) was calculated for randomly selected rods. Cohesive fracture in cement was the most frequent observed fracture morphology. Combination of adhesive and cohesive fractures were second most common. Fracture characterized as an adhesive between rod and cement was not observed for KHF2 etched zirconia. Highest mean tensile bond strength was observed when cementing air borne particle abraded zirconia with Variolink Esthetic (Ivoclar Vivadent). All surface treatments resulted in Sa values that were significant different from each other. The number of cohesive cement fractures observed suggested that the cement was the weakest link in bonding of zirconia and lithium disilicate. |
topic |
Zirconia ceramics resin cement |
url |
http://dx.doi.org/10.1080/23337931.2018.1561188 |
work_keys_str_mv |
AT minaakersagen debondingmechanismofzirconiaandlithiumdisilicateresincementedtodentin AT ketilkvam debondingmechanismofzirconiaandlithiumdisilicateresincementedtodentin AT eysteinivarruyter debondingmechanismofzirconiaandlithiumdisilicateresincementedtodentin AT hansjacobrønold debondingmechanismofzirconiaandlithiumdisilicateresincementedtodentin |
_version_ |
1724299510016901120 |