Summary: | Fuzzy graph theory is a conceptual framework to study and analyze the units that are intensely or frequently connected in a network. It is used to study the mathematical structures of pairwise relations among objects. An m-polar fuzzy (mF, for short) set is a useful notion in practice, which is used by researchers or modelings on real world problems that sometimes involve multi-agents, multi-attributes, multi-objects, multi-indexes and multi-polar information. In this paper, we apply the concept of mF sets to hypergraphs, and present the notions of regular mF hypergraphs and totally regular mF hypergraphs. We describe the certain properties of regular mF hypergraphs and totally regular mF hypergraphs. We discuss the novel applications of mF hypergraphs in decision-making problems. We also develop efficient algorithms to solve decision-making problems.
|