Local Fitting sets and the injectors of a finite group

The product F  ◊  X of the Fitting set F of a group G and the Fitting class X is called the set of subgroups {H ≤ G: H/HF ∈ X}. Let P be the set of all primes, ∅ ≠ π ⊆ P, π′ = P\π and Eπ′ denote the class of all π′-groups. Let S and Sπ to denote the class of all soluble groups and the class of all π...

Full description

Bibliographic Details
Main Author: Tatyana B. Karaulova
Format: Article
Language:Belarusian
Published: Belarusian State University 2019-01-01
Series: Журнал Белорусского государственного университета: Математика, информатика
Subjects:
Online Access:https://journals.bsu.by/index.php/mathematics/article/view/1010
id doaj-e66c02dcf299468fa4ef89fa28773bb3
record_format Article
spelling doaj-e66c02dcf299468fa4ef89fa28773bb32020-11-25T02:24:33ZbelBelarusian State University Журнал Белорусского государственного университета: Математика, информатика 2520-65082617-39562019-01-01329381010Local Fitting sets and the injectors of a finite groupTatyana B. Karaulova0P. M. Masherov Vitebsk State University, 33 Maskoŭski Avenue, Vitebsk 210038, BelarusThe product F  ◊  X of the Fitting set F of a group G and the Fitting class X is called the set of subgroups {H ≤ G: H/HF ∈ X}. Let P be the set of all primes, ∅ ≠ π ⊆ P, π′ = P\π and Eπ′ denote the class of all π′-groups. Let S and Sπ to denote the class of all soluble groups and the class of all π -soluble groups, respectively. In the paper, it is proved that F-injector of a group G either covers or avoids every chief factor of G if G is a partially soluble group. Chief factors of a group covered by F-injectors are described in the following cases: 1) G ∈ F  ◊  S and F  is the Hartley set of G; 2) G ∈ Sπ and F = F ◊ Eπ′ for the integrated H-function f.https://journals.bsu.by/index.php/mathematics/article/view/1010fitting setf-injectorhartley functioncover-avoid property
collection DOAJ
language Belarusian
format Article
sources DOAJ
author Tatyana B. Karaulova
spellingShingle Tatyana B. Karaulova
Local Fitting sets and the injectors of a finite group
Журнал Белорусского государственного университета: Математика, информатика
fitting set
f-injector
hartley function
cover-avoid property
author_facet Tatyana B. Karaulova
author_sort Tatyana B. Karaulova
title Local Fitting sets and the injectors of a finite group
title_short Local Fitting sets and the injectors of a finite group
title_full Local Fitting sets and the injectors of a finite group
title_fullStr Local Fitting sets and the injectors of a finite group
title_full_unstemmed Local Fitting sets and the injectors of a finite group
title_sort local fitting sets and the injectors of a finite group
publisher Belarusian State University
series Журнал Белорусского государственного университета: Математика, информатика
issn 2520-6508
2617-3956
publishDate 2019-01-01
description The product F  ◊  X of the Fitting set F of a group G and the Fitting class X is called the set of subgroups {H ≤ G: H/HF ∈ X}. Let P be the set of all primes, ∅ ≠ π ⊆ P, π′ = P\π and Eπ′ denote the class of all π′-groups. Let S and Sπ to denote the class of all soluble groups and the class of all π -soluble groups, respectively. In the paper, it is proved that F-injector of a group G either covers or avoids every chief factor of G if G is a partially soluble group. Chief factors of a group covered by F-injectors are described in the following cases: 1) G ∈ F  ◊  S and F  is the Hartley set of G; 2) G ∈ Sπ and F = F ◊ Eπ′ for the integrated H-function f.
topic fitting set
f-injector
hartley function
cover-avoid property
url https://journals.bsu.by/index.php/mathematics/article/view/1010
work_keys_str_mv AT tatyanabkaraulova localfittingsetsandtheinjectorsofafinitegroup
_version_ 1724855051972771840