Novel formulation with essential oils as a potential agent to minimize African swine fever virus transmission in an in vivo trial in swine
Background and Aim: African swine fever (ASF) is currently the most prevalent disease in swine. The disease is spreading throughout primary swine-producing countries with heavy losses in population and revenue. To date, no successful vaccines or medications have been reported. This study aimed to de...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Veterinary World
2021-07-01
|
Series: | Veterinary World |
Subjects: | |
Online Access: | http://www.veterinaryworld.org/Vol.14/July-2021/19.pdf |
Summary: | Background and Aim: African swine fever (ASF) is currently the most prevalent disease in swine. The disease is spreading throughout primary swine-producing countries with heavy losses in population and revenue. To date, no successful vaccines or medications have been reported. This study aimed to design and develop a blend of natural essential oils and test its efficacy against the ASF virus (ASFV) in swine.
Materials and Methods: We attempted to develop a natural oil blend formulation (NOBF) and determine its efficacy against the ASFV. This study follows on from a previously published in vitro study that reported that the NOBF has anti ASFV properties. A study was designed using 21 healthy piglets of triple-cross (Landrace + Yorkshire + Durok) crossbred pathogen-free pigs with an average weight of 15 kg. The study consisted of NOBF-incubated, NOBF, positive control, and negative control groups. The NOBF groups were administered NOBF (80 mL/ton mixed in drinking water) beginning 10 days before the challenge and continuing throughout the experiment. The positive and negative control pigs consumed regular drinking water. The pigs were challenged by a sublethal dose of pure isolate ASFV strain Vietnam National University of Agriculture-ASFV-L01/HN/04/19 inoculation with 103.5 HAD50/dose through the intramuscular route. There were sic pigs in each group, three pigs directly IM challenged, and three pigs were considered cohoused pigs.
Results: Both challenged (three) and cohoused (three) pigs in the positive control showed clinical signs of ASFV infection, as detected by real-time polymerase chain reaction (RT-PCR) in blood samples, oral swabs, and feces. There was 100% cumulative mortality, that is, both challenged and contact pigs died in the positive control group on day 20 of infection. No signs of infection or mortality were observed in the NOBF-incubated group. The challenged pigs in the NOBF-direct challenge group showed clinical signs and mortality, whereas no clinical signs or symptoms occurred in the cohoused pigs. The immunoglobulin G (IgG) level of the contact pigs was the highest in the treatment group and the lowest in the positive control group. The IgM level of the contact pigs in the treatment groups was the lowest, whereas that of the positive control was the highest. The RT-PCR test showed that the ASFV was deactivated in the NOBF-incubated group. The challenged and contact pigs of the positive control group had high Ct values. The challenged pigs of the NOBF group had high Ct values, whereas the contact pigs from the same group and those of the negative control were negative for the ASFV, determined by PCR, in all samples. The comparison of the challenged groups showed that the appearance of the virus was delayed by at least 2 days in the NOBF group compared to the positive control group.
Conclusion: The results showed that NOBF can prevent the spread of the ASFV in a population. Moreover, NOBF can enhance the pig humoral immune system by enhancing IgG levels and reducing IgM levels. This study successfully demonstrated that NOBF is an anti-ASFV agent, which prevents horizontal transmission and enhances pig humoral immunity. |
---|---|
ISSN: | 0972-8988 2231-0916 |