DOA Estimation for Multiple Targets in MIMO Radar with Nonorthogonal Signals

This paper addresses the direction of arrival (DOA) estimation problem in the colocated multiple-input multiple-output (MIMO) radar with nonorthogonal signals. The maximum number of targets that can be estimated is theoretically derived as rankRsN, where N denotes the number of receiving antennas an...

Full description

Bibliographic Details
Main Authors: Zhenxin Cao, Peng Chen, Zhimin Chen, Yi Jin
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/6465856
Description
Summary:This paper addresses the direction of arrival (DOA) estimation problem in the colocated multiple-input multiple-output (MIMO) radar with nonorthogonal signals. The maximum number of targets that can be estimated is theoretically derived as rankRsN, where N denotes the number of receiving antennas and Rs is the cross-correlation matrix of the transmitted signals. Therefore, with the rank-deficient cross-correlation matrix, the maximum number that can be estimated is less than the radar with orthogonal signals. Then, a multiple signal classification- (MUSIC-) based algorithm is given for the nonorthogonal signals. Furthermore, the DOA estimation performance is also theoretically analyzed by the Carmér-Rao lower bound. Simulation results show that the nonorthogonality degrades the DOA estimation performance only in the scenario with the rank-deficient cross-correlation matrix.
ISSN:1024-123X
1563-5147