Microfluidic-Based Amplification-Free Bacterial DNA Detection by Dielectrophoretic Concentration and Fluorescent Resonance Energy Transfer Assisted in Situ Hybridization (FRET-ISH)

Although real-time PCR (RT-PCR) has become a diagnostic standard for rapid identification of bacterial species, typical methods remain time-intensive due to sample preparation and amplification cycle times. The assay described in this work incorporates on-chip dielectrophoretic capture and concentra...

Full description

Bibliographic Details
Main Authors: Maxim Shusteff, Evangelyn C. Alocilja, Michelle M. Packard
Format: Article
Language:English
Published: MDPI AG 2012-10-01
Series:Biosensors
Subjects:
Online Access:http://www.mdpi.com/2079-6374/2/4/405
Description
Summary:Although real-time PCR (RT-PCR) has become a diagnostic standard for rapid identification of bacterial species, typical methods remain time-intensive due to sample preparation and amplification cycle times. The assay described in this work incorporates on-chip dielectrophoretic capture and concentration of bacterial cells, thermal lysis, cell permeabilization, and nucleic acid denaturation and fluorescence resonance energy transfer assisted in situ hybridization (FRET-ISH) species identification. Combining these techniques leverages the benefits of all of them, allowing identification to be accomplished completely on chip less than thirty minutes after receipt of sample, compared to multiple hours required by traditional RT-PCR and its requisite sample preparation.
ISSN:2079-6374