Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity
A commuting graph is a graph denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo&g...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-09-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/9/1178 |
id |
doaj-e64e724f279e415e833e357df0ba4a0f |
---|---|
record_format |
Article |
spelling |
doaj-e64e724f279e415e833e357df0ba4a0f2020-11-25T02:48:02ZengMDPI AGSymmetry2073-89942019-09-01119117810.3390/sym11091178sym11091178Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its ConnectivityAthirah Nawawi0Sharifah Kartini Said Husain1Muhammad Rezal Kamel Ariffin2Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, MalaysiaDepartment of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, MalaysiaDepartment of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, MalaysiaA commuting graph is a graph denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> where <i>G</i> is any group and <i>X</i>, a subset of a group <i>G</i>, is a set of vertices for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Two distinct vertices, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula>, will be connected by an edge if the commutativity property is satisfied or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>. This study presents results for the connectivity of <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> when <i>G</i> is a symmetric group of degree <i>n</i>, Sym<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, and <i>X</i> is a conjugacy class of elements of order three in <i>G</i>.https://www.mdpi.com/2073-8994/11/9/1178commuting graphsymmetric grouporder 3 elements |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Athirah Nawawi Sharifah Kartini Said Husain Muhammad Rezal Kamel Ariffin |
spellingShingle |
Athirah Nawawi Sharifah Kartini Said Husain Muhammad Rezal Kamel Ariffin Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity Symmetry commuting graph symmetric group order 3 elements |
author_facet |
Athirah Nawawi Sharifah Kartini Said Husain Muhammad Rezal Kamel Ariffin |
author_sort |
Athirah Nawawi |
title |
Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity |
title_short |
Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity |
title_full |
Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity |
title_fullStr |
Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity |
title_full_unstemmed |
Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity |
title_sort |
commuting graphs, <i>c</i>(<i>g</i>, <i>x</i>) in symmetric groups sym(<i>n</i>) and its connectivity |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-09-01 |
description |
A commuting graph is a graph denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> where <i>G</i> is any group and <i>X</i>, a subset of a group <i>G</i>, is a set of vertices for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Two distinct vertices, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula>, will be connected by an edge if the commutativity property is satisfied or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>. This study presents results for the connectivity of <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> when <i>G</i> is a symmetric group of degree <i>n</i>, Sym<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, and <i>X</i> is a conjugacy class of elements of order three in <i>G</i>. |
topic |
commuting graph symmetric group order 3 elements |
url |
https://www.mdpi.com/2073-8994/11/9/1178 |
work_keys_str_mv |
AT athirahnawawi commutinggraphsiciigiixiinsymmetricgroupssyminianditsconnectivity AT sharifahkartinisaidhusain commutinggraphsiciigiixiinsymmetricgroupssyminianditsconnectivity AT muhammadrezalkamelariffin commutinggraphsiciigiixiinsymmetricgroupssyminianditsconnectivity |
_version_ |
1724750439895793664 |