Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity

A commuting graph is a graph denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo&g...

Full description

Bibliographic Details
Main Authors: Athirah Nawawi, Sharifah Kartini Said Husain, Muhammad Rezal Kamel Ariffin
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/9/1178
id doaj-e64e724f279e415e833e357df0ba4a0f
record_format Article
spelling doaj-e64e724f279e415e833e357df0ba4a0f2020-11-25T02:48:02ZengMDPI AGSymmetry2073-89942019-09-01119117810.3390/sym11091178sym11091178Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its ConnectivityAthirah Nawawi0Sharifah Kartini Said Husain1Muhammad Rezal Kamel Ariffin2Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, MalaysiaDepartment of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, MalaysiaDepartment of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, MalaysiaA commuting graph is a graph denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> where <i>G</i> is any group and <i>X</i>, a subset of a group <i>G</i>, is a set of vertices for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Two distinct vertices, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#8712;</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula>, will be connected by an edge if the commutativity property is satisfied or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>. This study presents results for the connectivity of <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> when <i>G</i> is a symmetric group of degree <i>n</i>, Sym<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, and <i>X</i> is a conjugacy class of elements of order three in <i>G</i>.https://www.mdpi.com/2073-8994/11/9/1178commuting graphsymmetric grouporder 3 elements
collection DOAJ
language English
format Article
sources DOAJ
author Athirah Nawawi
Sharifah Kartini Said Husain
Muhammad Rezal Kamel Ariffin
spellingShingle Athirah Nawawi
Sharifah Kartini Said Husain
Muhammad Rezal Kamel Ariffin
Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity
Symmetry
commuting graph
symmetric group
order 3 elements
author_facet Athirah Nawawi
Sharifah Kartini Said Husain
Muhammad Rezal Kamel Ariffin
author_sort Athirah Nawawi
title Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity
title_short Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity
title_full Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity
title_fullStr Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity
title_full_unstemmed Commuting Graphs, <i>C</i>(<i>G</i>, <i>X</i>) in Symmetric Groups Sym(<i>n</i>) and Its Connectivity
title_sort commuting graphs, <i>c</i>(<i>g</i>, <i>x</i>) in symmetric groups sym(<i>n</i>) and its connectivity
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-09-01
description A commuting graph is a graph denoted by <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> where <i>G</i> is any group and <i>X</i>, a subset of a group <i>G</i>, is a set of vertices for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Two distinct vertices, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#8712;</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula>, will be connected by an edge if the commutativity property is satisfied or <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mi>x</mi> </mrow> </semantics> </math> </inline-formula>. This study presents results for the connectivity of <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> when <i>G</i> is a symmetric group of degree <i>n</i>, Sym<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, and <i>X</i> is a conjugacy class of elements of order three in <i>G</i>.
topic commuting graph
symmetric group
order 3 elements
url https://www.mdpi.com/2073-8994/11/9/1178
work_keys_str_mv AT athirahnawawi commutinggraphsiciigiixiinsymmetricgroupssyminianditsconnectivity
AT sharifahkartinisaidhusain commutinggraphsiciigiixiinsymmetricgroupssyminianditsconnectivity
AT muhammadrezalkamelariffin commutinggraphsiciigiixiinsymmetricgroupssyminianditsconnectivity
_version_ 1724750439895793664