CTIDH: faster constant-time CSIDH
This paper introduces a new key space for CSIDH and a new algorithm for constant-time evaluation of the CSIDH group action. The key space is not useful with previous algorithms, and the algorithm is not useful with previous key spaces, but combining the new key space with the new algorithm produces...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ruhr-Universität Bochum
2021-08-01
|
Series: | Transactions on Cryptographic Hardware and Embedded Systems |
Subjects: | |
Online Access: | https://tches.iacr.org/index.php/TCHES/article/view/9069 |
id |
doaj-e64bf29d633f4bc3891c614e8ebe41cf |
---|---|
record_format |
Article |
spelling |
doaj-e64bf29d633f4bc3891c614e8ebe41cf2021-08-11T14:18:45ZengRuhr-Universität BochumTransactions on Cryptographic Hardware and Embedded Systems2569-29252021-08-012021410.46586/tches.v2021.i4.351-387CTIDH: faster constant-time CSIDHGustavo Banegas0Daniel J. Bernstein1Fabio Campos2Tung Chou3Tanja Lange4Michael Meyer5Benjamin Smith6Jana Sotáková7Inria and Laboratoire d’Informatique de l’Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, FranceDepartment of Computer Science, University of Illinois at Chicago, USA; Horst Görtz Institute for IT Security, Ruhr University Bochum, GermanyMax Planck Institute for Security and Privacy, Bochum, GermanyAcademia Sinica, Taipei, TaiwanEindhoven University of Technology, Eindhoven, The NetherlandsTechnical University of Darmstadt, Darmstadt, GermanyInria and Laboratoire d’Informatique de l’Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, FranceInstitute for Logic, Language and Computation, University of Amsterdam, The Netherlands; QuSoft This paper introduces a new key space for CSIDH and a new algorithm for constant-time evaluation of the CSIDH group action. The key space is not useful with previous algorithms, and the algorithm is not useful with previous key spaces, but combining the new key space with the new algorithm produces speed records for constant-time CSIDH. For example, for CSIDH-512 with a 256-bit key space, the best previous constant-time results used 789000 multiplications and more than 200 million Skylake cycles; this paper uses 438006 multiplications and 125.53 million cycles. https://tches.iacr.org/index.php/TCHES/article/view/9069post-quantum cryptographynon-interactive key exchangesmall keysisogeny-based cryptographyCSIDHconstant-time algorithms |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gustavo Banegas Daniel J. Bernstein Fabio Campos Tung Chou Tanja Lange Michael Meyer Benjamin Smith Jana Sotáková |
spellingShingle |
Gustavo Banegas Daniel J. Bernstein Fabio Campos Tung Chou Tanja Lange Michael Meyer Benjamin Smith Jana Sotáková CTIDH: faster constant-time CSIDH Transactions on Cryptographic Hardware and Embedded Systems post-quantum cryptography non-interactive key exchange small keys isogeny-based cryptography CSIDH constant-time algorithms |
author_facet |
Gustavo Banegas Daniel J. Bernstein Fabio Campos Tung Chou Tanja Lange Michael Meyer Benjamin Smith Jana Sotáková |
author_sort |
Gustavo Banegas |
title |
CTIDH: faster constant-time CSIDH |
title_short |
CTIDH: faster constant-time CSIDH |
title_full |
CTIDH: faster constant-time CSIDH |
title_fullStr |
CTIDH: faster constant-time CSIDH |
title_full_unstemmed |
CTIDH: faster constant-time CSIDH |
title_sort |
ctidh: faster constant-time csidh |
publisher |
Ruhr-Universität Bochum |
series |
Transactions on Cryptographic Hardware and Embedded Systems |
issn |
2569-2925 |
publishDate |
2021-08-01 |
description |
This paper introduces a new key space for CSIDH and a new algorithm for constant-time evaluation of the CSIDH group action. The key space is not useful with previous algorithms, and the algorithm is not useful with previous key spaces, but combining the new key space with the new algorithm produces speed records for constant-time CSIDH. For example, for CSIDH-512 with a 256-bit key space, the best previous constant-time results used 789000 multiplications and more than 200 million Skylake cycles; this paper uses 438006 multiplications and 125.53 million cycles.
|
topic |
post-quantum cryptography non-interactive key exchange small keys isogeny-based cryptography CSIDH constant-time algorithms |
url |
https://tches.iacr.org/index.php/TCHES/article/view/9069 |
work_keys_str_mv |
AT gustavobanegas ctidhfasterconstanttimecsidh AT danieljbernstein ctidhfasterconstanttimecsidh AT fabiocampos ctidhfasterconstanttimecsidh AT tungchou ctidhfasterconstanttimecsidh AT tanjalange ctidhfasterconstanttimecsidh AT michaelmeyer ctidhfasterconstanttimecsidh AT benjaminsmith ctidhfasterconstanttimecsidh AT janasotakova ctidhfasterconstanttimecsidh |
_version_ |
1721211110265192448 |