Formation of Toxic Amyloid Fibrils by Amyloid β-Protein on Ganglioside Clusters

It is widely accepted that the conversion of the soluble, nontoxic amyloid β-protein (Aβ) monomer to aggregated toxic Aβ rich in β-sheet structures is central to the development of Alzheimer’s disease. However, the mechanism of the abnormal aggregation of Aβ in vivo is not well understood. Accumulat...

Full description

Bibliographic Details
Main Author: Katsumi Matsuzaki
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:International Journal of Alzheimer's Disease
Online Access:http://dx.doi.org/10.4061/2011/956104
Description
Summary:It is widely accepted that the conversion of the soluble, nontoxic amyloid β-protein (Aβ) monomer to aggregated toxic Aβ rich in β-sheet structures is central to the development of Alzheimer’s disease. However, the mechanism of the abnormal aggregation of Aβ in vivo is not well understood. Accumulating evidence suggests that lipid rafts (microdomains) in membranes mainly composed of sphingolipids (gangliosides and sphingomyelin) and cholesterol play a pivotal role in this process. This paper summarizes the molecular mechanisms by which Aβ aggregates on membranes containing ganglioside clusters, forming amyloid fibrils. Notably, the toxicity and physicochemical properties of the fibrils are different from those of Aβ amyloids formed in solution. Furthermore, differences between Aβ-(1–40) and Aβ-(1–42) in membrane interaction and amyloidogenesis are also emphasized.
ISSN:2090-0252