Optimal variable shape parameters using genetic algorithm for radial basis function approximation

Many radial basis function (RBF) methods contain free shape parameter or parameters that play an important role for the accuracy of the method. In most papers the authors end up choosing free shape parameter by trial and error or some other ad-hoc means. However, using variable shape parameters prov...

Full description

Bibliographic Details
Main Authors: F. Afiatdoust, M. Esmaeilbeigi
Format: Article
Language:English
Published: Elsevier 2015-06-01
Series:Ain Shams Engineering Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2090447914001622
id doaj-e643f74d601a4640b7029b8b00a61127
record_format Article
spelling doaj-e643f74d601a4640b7029b8b00a611272021-06-02T15:19:22ZengElsevierAin Shams Engineering Journal2090-44792015-06-016263964710.1016/j.asej.2014.10.019Optimal variable shape parameters using genetic algorithm for radial basis function approximationF. AfiatdoustM. EsmaeilbeigiMany radial basis function (RBF) methods contain free shape parameter or parameters that play an important role for the accuracy of the method. In most papers the authors end up choosing free shape parameter by trial and error or some other ad-hoc means. However, using variable shape parameters provides a clear potential for improved accuracy and stability of the RBF method. Already some progress has been reported to select usable variable shape parameters. In this paper, we propose applying the genetic algorithm to determine good variable shape parameters of radial basis functions for the solution of ordinary differential equations. Numerical results show that the proposed algorithm based on the genetic optimization is effective and provides reasonable shape parameters along with acceptable accuracy in linear and nonlinear case compared with other strategies to determine variable shape parameters.http://www.sciencedirect.com/science/article/pii/S2090447914001622Radial basis functionVariable shape parametersGenetic algorithmDifferential equation
collection DOAJ
language English
format Article
sources DOAJ
author F. Afiatdoust
M. Esmaeilbeigi
spellingShingle F. Afiatdoust
M. Esmaeilbeigi
Optimal variable shape parameters using genetic algorithm for radial basis function approximation
Ain Shams Engineering Journal
Radial basis function
Variable shape parameters
Genetic algorithm
Differential equation
author_facet F. Afiatdoust
M. Esmaeilbeigi
author_sort F. Afiatdoust
title Optimal variable shape parameters using genetic algorithm for radial basis function approximation
title_short Optimal variable shape parameters using genetic algorithm for radial basis function approximation
title_full Optimal variable shape parameters using genetic algorithm for radial basis function approximation
title_fullStr Optimal variable shape parameters using genetic algorithm for radial basis function approximation
title_full_unstemmed Optimal variable shape parameters using genetic algorithm for radial basis function approximation
title_sort optimal variable shape parameters using genetic algorithm for radial basis function approximation
publisher Elsevier
series Ain Shams Engineering Journal
issn 2090-4479
publishDate 2015-06-01
description Many radial basis function (RBF) methods contain free shape parameter or parameters that play an important role for the accuracy of the method. In most papers the authors end up choosing free shape parameter by trial and error or some other ad-hoc means. However, using variable shape parameters provides a clear potential for improved accuracy and stability of the RBF method. Already some progress has been reported to select usable variable shape parameters. In this paper, we propose applying the genetic algorithm to determine good variable shape parameters of radial basis functions for the solution of ordinary differential equations. Numerical results show that the proposed algorithm based on the genetic optimization is effective and provides reasonable shape parameters along with acceptable accuracy in linear and nonlinear case compared with other strategies to determine variable shape parameters.
topic Radial basis function
Variable shape parameters
Genetic algorithm
Differential equation
url http://www.sciencedirect.com/science/article/pii/S2090447914001622
work_keys_str_mv AT fafiatdoust optimalvariableshapeparametersusinggeneticalgorithmforradialbasisfunctionapproximation
AT mesmaeilbeigi optimalvariableshapeparametersusinggeneticalgorithmforradialbasisfunctionapproximation
_version_ 1721403339564908544