Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential

In internal combustion engines, a significant share of the fuel energy is wasted via the heat losses. This study aims to understand the heat losses and analyze the potential of the waste heat recovery when biofuels are used in SI engines. A numerical model is developed for a single-cylinder, four-st...

Full description

Bibliographic Details
Main Authors: Ali Qasemian, Sina Jenabi Haghparast, Pouria Azarikhah, Meisam Babaie
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/13/11/5921
id doaj-e63cc0243ebe43019693faaa113f300f
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Ali Qasemian
Sina Jenabi Haghparast
Pouria Azarikhah
Meisam Babaie
spellingShingle Ali Qasemian
Sina Jenabi Haghparast
Pouria Azarikhah
Meisam Babaie
Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential
Sustainability
internal combustion engine
energy balance
compression ratio
ethanol biofuel
waste heat recovery
author_facet Ali Qasemian
Sina Jenabi Haghparast
Pouria Azarikhah
Meisam Babaie
author_sort Ali Qasemian
title Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential
title_short Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential
title_full Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential
title_fullStr Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential
title_full_unstemmed Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential
title_sort effects of compression ratio of bio-fueled si engines on the thermal balance and waste heat recovery potential
publisher MDPI AG
series Sustainability
issn 2071-1050
publishDate 2021-05-01
description In internal combustion engines, a significant share of the fuel energy is wasted via the heat losses. This study aims to understand the heat losses and analyze the potential of the waste heat recovery when biofuels are used in SI engines. A numerical model is developed for a single-cylinder, four-stroke and air-cooled SI engine to carry out the waste heat recovery analysis. To verify the numerical solution, experiments are first conducted for the gasoline engine. Biofuels including pure ethanol (E100), E15 (15% ethanol) and E85 (85% ethanol) are then studied using the validated numerical model. Furthermore, the exhaust power to heat loss ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>) is investigated for different compression ratios, ethanol fuel content and engine speed to understand the exhaust losses potential in terms of the heat recovery. The results indicate that heat loss to brake power ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>W</mi><mo>˙</mo></mover><mi>b</mi></msub></mrow></semantics></math></inline-formula>) increases by the increment in the compression ratio. In addition, increasing the compression ratio leads to decreasing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio for all studied fuels. According to the results, there is a direct relationship between the ethanol in fuel content and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio. As the percentage of ethanol in fuel increases, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio rises. Thus, the more the ethanol in the fuel and the less the compression ratio, the more the potential for the waste heat recovery of the IC engine. Considering both power and waste heat recovery, the most efficient fuel is E100 due to the highest brake thermal efficiency and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio and E85, E15 and E00 (pure gasoline) come next in the consecutive orders. At the engine speeds and compression ratios examined in this study (3000 to 5000 rpm and a CR of 8 to 11), the maximum efficiency is about 35% at 5000 rpm and the compression ratio of 11 for E100. The minimum percentage of heat loss is 21.62 happening at 5000 rpm and the compression ratio of 8 by E100. The minimum percentage of exhaust loss is 35.8% happening at 3000 rpm and the compression ratio of 11 for E00. The most <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is 2.13 which is related to E100 at the minimum compression ratio of 8.
topic internal combustion engine
energy balance
compression ratio
ethanol biofuel
waste heat recovery
url https://www.mdpi.com/2071-1050/13/11/5921
work_keys_str_mv AT aliqasemian effectsofcompressionratioofbiofueledsienginesonthethermalbalanceandwasteheatrecoverypotential
AT sinajenabihaghparast effectsofcompressionratioofbiofueledsienginesonthethermalbalanceandwasteheatrecoverypotential
AT pouriaazarikhah effectsofcompressionratioofbiofueledsienginesonthethermalbalanceandwasteheatrecoverypotential
AT meisambabaie effectsofcompressionratioofbiofueledsienginesonthethermalbalanceandwasteheatrecoverypotential
_version_ 1721413356673302528
spelling doaj-e63cc0243ebe43019693faaa113f300f2021-06-01T00:59:18ZengMDPI AGSustainability2071-10502021-05-01135921592110.3390/su13115921Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery PotentialAli Qasemian0Sina Jenabi Haghparast1Pouria Azarikhah2Meisam Babaie3School of Automotive engineering, Iran University of Science and Technology, Tehran 1684613114, IranSchool of Automotive engineering, Iran University of Science and Technology, Tehran 1684613114, IranDepartment of Mechanical Engineering, Iran University of Science and Technology, Tehran 1684613114, IranSchool of Science, Engineering and Environment, University of Salford, Manchester M5 4BR, UKIn internal combustion engines, a significant share of the fuel energy is wasted via the heat losses. This study aims to understand the heat losses and analyze the potential of the waste heat recovery when biofuels are used in SI engines. A numerical model is developed for a single-cylinder, four-stroke and air-cooled SI engine to carry out the waste heat recovery analysis. To verify the numerical solution, experiments are first conducted for the gasoline engine. Biofuels including pure ethanol (E100), E15 (15% ethanol) and E85 (85% ethanol) are then studied using the validated numerical model. Furthermore, the exhaust power to heat loss ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>) is investigated for different compression ratios, ethanol fuel content and engine speed to understand the exhaust losses potential in terms of the heat recovery. The results indicate that heat loss to brake power ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>W</mi><mo>˙</mo></mover><mi>b</mi></msub></mrow></semantics></math></inline-formula>) increases by the increment in the compression ratio. In addition, increasing the compression ratio leads to decreasing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio for all studied fuels. According to the results, there is a direct relationship between the ethanol in fuel content and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio. As the percentage of ethanol in fuel increases, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio rises. Thus, the more the ethanol in the fuel and the less the compression ratio, the more the potential for the waste heat recovery of the IC engine. Considering both power and waste heat recovery, the most efficient fuel is E100 due to the highest brake thermal efficiency and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> ratio and E85, E15 and E00 (pure gasoline) come next in the consecutive orders. At the engine speeds and compression ratios examined in this study (3000 to 5000 rpm and a CR of 8 to 11), the maximum efficiency is about 35% at 5000 rpm and the compression ratio of 11 for E100. The minimum percentage of heat loss is 21.62 happening at 5000 rpm and the compression ratio of 8 by E100. The minimum percentage of exhaust loss is 35.8% happening at 3000 rpm and the compression ratio of 11 for E00. The most <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>e</mi><mi>x</mi></mrow></msub><mo>/</mo><msub><mover accent="true"><mi>Q</mi><mo>˙</mo></mover><mrow><mi>h</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is 2.13 which is related to E100 at the minimum compression ratio of 8.https://www.mdpi.com/2071-1050/13/11/5921internal combustion engineenergy balancecompression ratioethanol biofuelwaste heat recovery