Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
Energy storage is one of the most effective ways to increase energy savings and efficiency of heating and air conditioning systems. Phase change materials (PCMs) are increasingly used in latent heat thermal energy storage (LHTES) systems to increase their capacity. In such systems, costs are a very...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/18/5172 |
id |
doaj-e62da79fe010409682e06ff6ed641731 |
---|---|
record_format |
Article |
spelling |
doaj-e62da79fe010409682e06ff6ed6417312021-09-26T00:36:02ZengMDPI AGMaterials1996-19442021-09-01145172517210.3390/ma14185172Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat ExchangersPaulina Rolka0Jaroslaw Karwacki1Maciej Jaworski2Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, PolandInstitute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, PolandInstitute of Heat Engineering, Warsaw University of Technology, 00-665 Warsaw, PolandEnergy storage is one of the most effective ways to increase energy savings and efficiency of heating and air conditioning systems. Phase change materials (PCMs) are increasingly used in latent heat thermal energy storage (LHTES) systems to increase their capacity. In such systems, costs are a very important factor of viability so the typical heat transfer elements like fin-and-tube heat exchangers are used to construct the LHTES. The problem of this approach is a possibility of corrosion of metals in contact with PCM that shortens the life cycle of LHTES. Therefore, the main objective of this work is an experimental study of the compatibility of metals typically used in fin-and-tube heat exchangers (copper and aluminum) with three commercially available organic PCMs (RT15, RT18HC, and RT22HC). Compatibility of PCMs with copper and aluminum was tested for a period of approximately two months, during which a total of 35 heating and cooling cycles were carried out, each with a complete phase transition of the tested materials. In the course of the tests it was assessed whether the PCM caused corrosion of the tested metals. The evaluation was based on the gravimetric method, calculation of corrosion rate, and visual observations and measurements of the features on the metal sample’s surface using optical microscope. It was determined that RT15, RT18 HC, and RT22 HC show low corrosion rates for aluminum and copper samples. The visual tests indicate that there was no change in the PCM solutions during the tests, only a sediment was observed for the samples with the combination of copper and aluminum. Microscopic examination of the surface of the samples did not show any significant surface changes, except for the aluminum samples, on the surface of which local microdefects were observed. It follows from the present results that copper and aluminum can be used to design the heat transfer surface in contact with the chosen PCMs.https://www.mdpi.com/1996-1944/14/18/5172phase change material (PCM)metal corrosioncopperaluminummaterial compatibilityfin-and-tube heat exchanger |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Paulina Rolka Jaroslaw Karwacki Maciej Jaworski |
spellingShingle |
Paulina Rolka Jaroslaw Karwacki Maciej Jaworski Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers Materials phase change material (PCM) metal corrosion copper aluminum material compatibility fin-and-tube heat exchanger |
author_facet |
Paulina Rolka Jaroslaw Karwacki Maciej Jaworski |
author_sort |
Paulina Rolka |
title |
Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers |
title_short |
Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers |
title_full |
Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers |
title_fullStr |
Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers |
title_full_unstemmed |
Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers |
title_sort |
compatibility tests between three commercially available organic pcms and metals typically used in fin-and-tube heat exchangers |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2021-09-01 |
description |
Energy storage is one of the most effective ways to increase energy savings and efficiency of heating and air conditioning systems. Phase change materials (PCMs) are increasingly used in latent heat thermal energy storage (LHTES) systems to increase their capacity. In such systems, costs are a very important factor of viability so the typical heat transfer elements like fin-and-tube heat exchangers are used to construct the LHTES. The problem of this approach is a possibility of corrosion of metals in contact with PCM that shortens the life cycle of LHTES. Therefore, the main objective of this work is an experimental study of the compatibility of metals typically used in fin-and-tube heat exchangers (copper and aluminum) with three commercially available organic PCMs (RT15, RT18HC, and RT22HC). Compatibility of PCMs with copper and aluminum was tested for a period of approximately two months, during which a total of 35 heating and cooling cycles were carried out, each with a complete phase transition of the tested materials. In the course of the tests it was assessed whether the PCM caused corrosion of the tested metals. The evaluation was based on the gravimetric method, calculation of corrosion rate, and visual observations and measurements of the features on the metal sample’s surface using optical microscope. It was determined that RT15, RT18 HC, and RT22 HC show low corrosion rates for aluminum and copper samples. The visual tests indicate that there was no change in the PCM solutions during the tests, only a sediment was observed for the samples with the combination of copper and aluminum. Microscopic examination of the surface of the samples did not show any significant surface changes, except for the aluminum samples, on the surface of which local microdefects were observed. It follows from the present results that copper and aluminum can be used to design the heat transfer surface in contact with the chosen PCMs. |
topic |
phase change material (PCM) metal corrosion copper aluminum material compatibility fin-and-tube heat exchanger |
url |
https://www.mdpi.com/1996-1944/14/18/5172 |
work_keys_str_mv |
AT paulinarolka compatibilitytestsbetweenthreecommerciallyavailableorganicpcmsandmetalstypicallyusedinfinandtubeheatexchangers AT jaroslawkarwacki compatibilitytestsbetweenthreecommerciallyavailableorganicpcmsandmetalstypicallyusedinfinandtubeheatexchangers AT maciejjaworski compatibilitytestsbetweenthreecommerciallyavailableorganicpcmsandmetalstypicallyusedinfinandtubeheatexchangers |
_version_ |
1716870300119859200 |