PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA

The study is aimed to estimate the best spline regression model for toddler’s weight growth patterns. Spline is one of the nonparametric regression estimation method which has a high flexibility and is able to handle data that change in particular subintervals so thus resulting in model which fitted...

Full description

Bibliographic Details
Main Authors: NI LUH SUKERNI, I KOMANG GDE SUKARSA, NI LUH PUTU SUCIPTAWATI
Format: Article
Language:English
Published: Universitas Udayana 2018-09-01
Series:E-Jurnal Matematika
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/41903
id doaj-e62d1628163e4ab4ad94f0f16814eba4
record_format Article
spelling doaj-e62d1628163e4ab4ad94f0f16814eba42020-11-25T01:47:50ZengUniversitas UdayanaE-Jurnal Matematika2303-17512018-09-017325926310.24843/MTK.2018.v07.i03.p21241903PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITANI LUH SUKERNI0I KOMANG GDE SUKARSA1NI LUH PUTU SUCIPTAWATI2Udayana UniversityUdayana UniversityUdayana UniversityThe study is aimed to estimate the best spline regression model for toddler’s weight growth patterns. Spline is one of the nonparametric regression estimation method which has a high flexibility and is able to handle data that change in particular subintervals so thus resulting in model which fitted the data. This study uses data of toddler’s weight growth at Posyandu Mekar Sari, Desa Suwug, Kabupaten Buleleng. The best spline regression model is chosen based on the minimum Generalized Cross Validation (GCV) value. The study shows that the best spline regression model for the data is quadratic spline regression model with six optimal knot points. The minimum GCV value is 0,900683471925 with the determination coefficient  equals to 0,954609.https://ojs.unud.ac.id/index.php/mtk/article/view/41903
collection DOAJ
language English
format Article
sources DOAJ
author NI LUH SUKERNI
I KOMANG GDE SUKARSA
NI LUH PUTU SUCIPTAWATI
spellingShingle NI LUH SUKERNI
I KOMANG GDE SUKARSA
NI LUH PUTU SUCIPTAWATI
PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA
E-Jurnal Matematika
author_facet NI LUH SUKERNI
I KOMANG GDE SUKARSA
NI LUH PUTU SUCIPTAWATI
author_sort NI LUH SUKERNI
title PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA
title_short PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA
title_full PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA
title_fullStr PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA
title_full_unstemmed PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA
title_sort pendekatan regresi spline untuk memodelkan pola pertumbuhan berat badan balita
publisher Universitas Udayana
series E-Jurnal Matematika
issn 2303-1751
publishDate 2018-09-01
description The study is aimed to estimate the best spline regression model for toddler’s weight growth patterns. Spline is one of the nonparametric regression estimation method which has a high flexibility and is able to handle data that change in particular subintervals so thus resulting in model which fitted the data. This study uses data of toddler’s weight growth at Posyandu Mekar Sari, Desa Suwug, Kabupaten Buleleng. The best spline regression model is chosen based on the minimum Generalized Cross Validation (GCV) value. The study shows that the best spline regression model for the data is quadratic spline regression model with six optimal knot points. The minimum GCV value is 0,900683471925 with the determination coefficient  equals to 0,954609.
url https://ojs.unud.ac.id/index.php/mtk/article/view/41903
work_keys_str_mv AT niluhsukerni pendekatanregresisplineuntukmemodelkanpolapertumbuhanberatbadanbalita
AT ikomanggdesukarsa pendekatanregresisplineuntukmemodelkanpolapertumbuhanberatbadanbalita
AT niluhputusuciptawati pendekatanregresisplineuntukmemodelkanpolapertumbuhanberatbadanbalita
_version_ 1725014324819263488