Preliminary Evaluation of the HOBO Data Logging Rain Gauge at the Chuzhou Hydrological Experiment Station, China
As a tipping bucket rain gauge, the HOBO Data Logging Rain Gauge RG3-M (RG3-M) has been widely used for the field precipitation observation owing to its superiority of independent power supply by a small portable battery. To quantify the measurement accuracy of the RG3-M gauge, a standard Manual Gau...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Advances in Meteorology |
Online Access: | http://dx.doi.org/10.1155/2019/5947976 |
Summary: | As a tipping bucket rain gauge, the HOBO Data Logging Rain Gauge RG3-M (RG3-M) has been widely used for the field precipitation observation owing to its superiority of independent power supply by a small portable battery. To quantify the measurement accuracy of the RG3-M gauge, a standard Manual Gauge (MG) and eight other models of tipping bucket rain gauges were installed at the Chuzhou hydrological experiment station of China. In this study, we first compared and investigated the accumulated mounts of 18 rainfall events of two RG3-M gauges benchmarked by the standard MG. Then, five typical rainfall events were chosen to further analyse the observed accuracy of the RG3-M gauge for different rainfall intensities at hourly temporal scale. Finally, the impacts of wind speed and rainfall intensity on the precipitation measurements of the RG3-M gauge were preliminarily explored. Results indicate that the RG3-M gauge measurement generally underestimates rainfall approximately −4% against the standard MG observation, but the maximum deviation even reaches −12.87%. In terms of the hourly rainfall process, the reliable measurement scope of the RG3-M gauge is ranging from 1.5 to 3 mm/h; however, it should be noted that the underestimation is rather significant at the higher rainfall rates (>6 mm/h). Last, it was found that rainfall intensity is a nonnegligible factor for influencing the measurement of the RG3-M gauge. But the windy effect seems to be insignificant in our experiments, which might be attributed to the similar exposure of the compared gauges. |
---|---|
ISSN: | 1687-9309 1687-9317 |