Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution

The PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles—microvesicles (100–1000 nm)—also attracts growing interest as biomarkers of different pathologies...

Full description

Bibliographic Details
Main Authors: Victoria Shpacovitch, Irina Sidorenko, Jan Eric Lenssen, Vladimir Temchura, Frank Weichert, Heinrich Müller, Klaus Überla, Alexander Zybin, Alexander Schramm, Roland Hergenröder
Format: Article
Language:English
Published: MDPI AG 2017-01-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/17/2/244
id doaj-e6087b0108a0499bb79c949d2fdfe8cf
record_format Article
spelling doaj-e6087b0108a0499bb79c949d2fdfe8cf2020-11-24T23:19:33ZengMDPI AGSensors1424-82202017-01-0117224410.3390/s17020244s17020244Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size DistributionVictoria Shpacovitch0Irina Sidorenko1Jan Eric Lenssen2Vladimir Temchura3Frank Weichert4Heinrich Müller5Klaus Überla6Alexander Zybin7Alexander Schramm8Roland Hergenröder9Leibniz Institute für Analytische Wissenschaften, ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, GermanyMIVITEC GmbH, Wamslerstraße.4, 81829 Munich, GermanyDepartment of Computer Science VII, TU Dortmund University, Otto-Hahn-Straße. 16, 44227Dortmund,GermanyInstitute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, GermanyDepartment of Computer Science VII, TU Dortmund University, Otto-Hahn-Straße. 16, 44227Dortmund,GermanyDepartment of Computer Science VII, TU Dortmund University, Otto-Hahn-Straße. 16, 44227Dortmund,GermanyInstitute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, GermanyLeibniz Institute für Analytische Wissenschaften, ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, GermanyChildren’s Hospital, Oncology Laboratory, University Clinic Essen, Hufelandstraße. 55, 45122 Essen, GermanyLeibniz Institute für Analytische Wissenschaften, ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, GermanyThe PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles—microvesicles (100–1000 nm)—also attracts growing interest as biomarkers of different pathologies and needs development of novel techniques for characterization. This work shows the applicability of a PAMONO-sensor for selective detection of microvesicles in aquatic samples. The sensor permits comparison of relative concentrations of microvesicles between samples. We also study a possibility of repeated use of a sensor chip after elution of the microvesicle capturing layer. Moreover, we improve the detection features of the PAMONO-sensor. The detection process utilizes novel machine learning techniques on the sensor image data to estimate particle size distributions of nano-particles in polydisperse samples. Altogether, our findings expand analytical features and the application field of the PAMONO-sensor. They can also serve for a maturation of diagnostic tools based on the PAMONO-sensor platform.http://www.mdpi.com/1424-8220/17/2/244plasmonic sensorssurface plasmon resonanceextracellular vesiclesmicrovesiclesmachine learningdeep learning
collection DOAJ
language English
format Article
sources DOAJ
author Victoria Shpacovitch
Irina Sidorenko
Jan Eric Lenssen
Vladimir Temchura
Frank Weichert
Heinrich Müller
Klaus Überla
Alexander Zybin
Alexander Schramm
Roland Hergenröder
spellingShingle Victoria Shpacovitch
Irina Sidorenko
Jan Eric Lenssen
Vladimir Temchura
Frank Weichert
Heinrich Müller
Klaus Überla
Alexander Zybin
Alexander Schramm
Roland Hergenröder
Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
Sensors
plasmonic sensors
surface plasmon resonance
extracellular vesicles
microvesicles
machine learning
deep learning
author_facet Victoria Shpacovitch
Irina Sidorenko
Jan Eric Lenssen
Vladimir Temchura
Frank Weichert
Heinrich Müller
Klaus Überla
Alexander Zybin
Alexander Schramm
Roland Hergenröder
author_sort Victoria Shpacovitch
title Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
title_short Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
title_full Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
title_fullStr Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
title_full_unstemmed Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
title_sort application of the pamono-sensor for quantification of microvesicles and determination of nano-particle size distribution
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2017-01-01
description The PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles—microvesicles (100–1000 nm)—also attracts growing interest as biomarkers of different pathologies and needs development of novel techniques for characterization. This work shows the applicability of a PAMONO-sensor for selective detection of microvesicles in aquatic samples. The sensor permits comparison of relative concentrations of microvesicles between samples. We also study a possibility of repeated use of a sensor chip after elution of the microvesicle capturing layer. Moreover, we improve the detection features of the PAMONO-sensor. The detection process utilizes novel machine learning techniques on the sensor image data to estimate particle size distributions of nano-particles in polydisperse samples. Altogether, our findings expand analytical features and the application field of the PAMONO-sensor. They can also serve for a maturation of diagnostic tools based on the PAMONO-sensor platform.
topic plasmonic sensors
surface plasmon resonance
extracellular vesicles
microvesicles
machine learning
deep learning
url http://www.mdpi.com/1424-8220/17/2/244
work_keys_str_mv AT victoriashpacovitch applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT irinasidorenko applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT janericlenssen applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT vladimirtemchura applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT frankweichert applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT heinrichmuller applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT klausuberla applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT alexanderzybin applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT alexanderschramm applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
AT rolandhergenroder applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution
_version_ 1725578400630833152