Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
The PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles—microvesicles (100–1000 nm)—also attracts growing interest as biomarkers of different pathologies...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/17/2/244 |
id |
doaj-e6087b0108a0499bb79c949d2fdfe8cf |
---|---|
record_format |
Article |
spelling |
doaj-e6087b0108a0499bb79c949d2fdfe8cf2020-11-24T23:19:33ZengMDPI AGSensors1424-82202017-01-0117224410.3390/s17020244s17020244Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size DistributionVictoria Shpacovitch0Irina Sidorenko1Jan Eric Lenssen2Vladimir Temchura3Frank Weichert4Heinrich Müller5Klaus Überla6Alexander Zybin7Alexander Schramm8Roland Hergenröder9Leibniz Institute für Analytische Wissenschaften, ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, GermanyMIVITEC GmbH, Wamslerstraße.4, 81829 Munich, GermanyDepartment of Computer Science VII, TU Dortmund University, Otto-Hahn-Straße. 16, 44227Dortmund,GermanyInstitute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, GermanyDepartment of Computer Science VII, TU Dortmund University, Otto-Hahn-Straße. 16, 44227Dortmund,GermanyDepartment of Computer Science VII, TU Dortmund University, Otto-Hahn-Straße. 16, 44227Dortmund,GermanyInstitute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, GermanyLeibniz Institute für Analytische Wissenschaften, ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, GermanyChildren’s Hospital, Oncology Laboratory, University Clinic Essen, Hufelandstraße. 55, 45122 Essen, GermanyLeibniz Institute für Analytische Wissenschaften, ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, GermanyThe PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles—microvesicles (100–1000 nm)—also attracts growing interest as biomarkers of different pathologies and needs development of novel techniques for characterization. This work shows the applicability of a PAMONO-sensor for selective detection of microvesicles in aquatic samples. The sensor permits comparison of relative concentrations of microvesicles between samples. We also study a possibility of repeated use of a sensor chip after elution of the microvesicle capturing layer. Moreover, we improve the detection features of the PAMONO-sensor. The detection process utilizes novel machine learning techniques on the sensor image data to estimate particle size distributions of nano-particles in polydisperse samples. Altogether, our findings expand analytical features and the application field of the PAMONO-sensor. They can also serve for a maturation of diagnostic tools based on the PAMONO-sensor platform.http://www.mdpi.com/1424-8220/17/2/244plasmonic sensorssurface plasmon resonanceextracellular vesiclesmicrovesiclesmachine learningdeep learning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Victoria Shpacovitch Irina Sidorenko Jan Eric Lenssen Vladimir Temchura Frank Weichert Heinrich Müller Klaus Überla Alexander Zybin Alexander Schramm Roland Hergenröder |
spellingShingle |
Victoria Shpacovitch Irina Sidorenko Jan Eric Lenssen Vladimir Temchura Frank Weichert Heinrich Müller Klaus Überla Alexander Zybin Alexander Schramm Roland Hergenröder Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution Sensors plasmonic sensors surface plasmon resonance extracellular vesicles microvesicles machine learning deep learning |
author_facet |
Victoria Shpacovitch Irina Sidorenko Jan Eric Lenssen Vladimir Temchura Frank Weichert Heinrich Müller Klaus Überla Alexander Zybin Alexander Schramm Roland Hergenröder |
author_sort |
Victoria Shpacovitch |
title |
Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution |
title_short |
Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution |
title_full |
Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution |
title_fullStr |
Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution |
title_full_unstemmed |
Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution |
title_sort |
application of the pamono-sensor for quantification of microvesicles and determination of nano-particle size distribution |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2017-01-01 |
description |
The PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles—microvesicles (100–1000 nm)—also attracts growing interest as biomarkers of different pathologies and needs development of novel techniques for characterization. This work shows the applicability of a PAMONO-sensor for selective detection of microvesicles in aquatic samples. The sensor permits comparison of relative concentrations of microvesicles between samples. We also study a possibility of repeated use of a sensor chip after elution of the microvesicle capturing layer. Moreover, we improve the detection features of the PAMONO-sensor. The detection process utilizes novel machine learning techniques on the sensor image data to estimate particle size distributions of nano-particles in polydisperse samples. Altogether, our findings expand analytical features and the application field of the PAMONO-sensor. They can also serve for a maturation of diagnostic tools based on the PAMONO-sensor platform. |
topic |
plasmonic sensors surface plasmon resonance extracellular vesicles microvesicles machine learning deep learning |
url |
http://www.mdpi.com/1424-8220/17/2/244 |
work_keys_str_mv |
AT victoriashpacovitch applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT irinasidorenko applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT janericlenssen applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT vladimirtemchura applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT frankweichert applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT heinrichmuller applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT klausuberla applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT alexanderzybin applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT alexanderschramm applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution AT rolandhergenroder applicationofthepamonosensorforquantificationofmicrovesiclesanddeterminationofnanoparticlesizedistribution |
_version_ |
1725578400630833152 |