Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.

<h4>Background</h4>The main goal of the present study was to analyse the genetic architecture of mRNA expression in muscle, a tissue with an outmost economic importance for pig breeders. Previous studies have used F(2) crosses to detect porcine expression QTL (eQTL), so they contributed...

Full description

Bibliographic Details
Main Authors: Angela Cánovas, Ramona N Pena, David Gallardo, Oscar Ramírez, Marcel Amills, Raquel Quintanilla
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22545120/?tool=EBI
id doaj-e5fb5eea83bb4ef1bf5bb49c317f6d48
record_format Article
spelling doaj-e5fb5eea83bb4ef1bf5bb49c317f6d482021-03-04T00:49:58ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0174e3558310.1371/journal.pone.0035583Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.Angela CánovasRamona N PenaDavid GallardoOscar RamírezMarcel AmillsRaquel Quintanilla<h4>Background</h4>The main goal of the present study was to analyse the genetic architecture of mRNA expression in muscle, a tissue with an outmost economic importance for pig breeders. Previous studies have used F(2) crosses to detect porcine expression QTL (eQTL), so they contributed with data that mostly represents the between-breed component of eQTL variation. Herewith, we have analysed eQTL segregation in an outbred Duroc population using two groups of animals with divergent fatness profiles. This approach is particularly suitable to analyse the within-breed component of eQTL variation, with a special emphasis on loci involved in lipid metabolism.<h4>Methodology/principal findings</h4>GeneChip Porcine Genome arrays (Affymetrix) were used to determine the mRNA expression levels of gluteus medius samples from 105 Duroc barrows. A whole-genome eQTL scan was carried out with a panel of 116 microsatellites. Results allowed us to detect 613 genome-wide significant eQTL unevenly distributed across the pig genome. A clear predominance of trans- over cis-eQTL, was observed. Moreover, 11 trans-regulatory hotspots affecting the expression levels of four to 16 genes were identified. A Gene Ontology study showed that regulatory polymorphisms affected the expression of muscle development and lipid metabolism genes. A number of positional concordances between eQTL and lipid trait QTL were also found, whereas limited evidence of a linear relationship between muscle fat deposition and mRNA levels of eQTL regulated genes was obtained.<h4>Conclusions/significance</h4>Our data provide substantial evidence that there is a remarkable amount of within-breed genetic variation affecting muscle mRNA expression. Most of this variation acts in trans and influences biological processes related with muscle development, lipid deposition and energy balance. The identification of the underlying causal mutations and the ascertainment of their effects on phenotypes would allow gaining a fundamental perspective about how complex traits are built at the molecular level.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22545120/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Angela Cánovas
Ramona N Pena
David Gallardo
Oscar Ramírez
Marcel Amills
Raquel Quintanilla
spellingShingle Angela Cánovas
Ramona N Pena
David Gallardo
Oscar Ramírez
Marcel Amills
Raquel Quintanilla
Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.
PLoS ONE
author_facet Angela Cánovas
Ramona N Pena
David Gallardo
Oscar Ramírez
Marcel Amills
Raquel Quintanilla
author_sort Angela Cánovas
title Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.
title_short Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.
title_full Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.
title_fullStr Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.
title_full_unstemmed Segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.
title_sort segregation of regulatory polymorphisms with effects on the gluteus medius transcriptome in a purebred pig population.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2012-01-01
description <h4>Background</h4>The main goal of the present study was to analyse the genetic architecture of mRNA expression in muscle, a tissue with an outmost economic importance for pig breeders. Previous studies have used F(2) crosses to detect porcine expression QTL (eQTL), so they contributed with data that mostly represents the between-breed component of eQTL variation. Herewith, we have analysed eQTL segregation in an outbred Duroc population using two groups of animals with divergent fatness profiles. This approach is particularly suitable to analyse the within-breed component of eQTL variation, with a special emphasis on loci involved in lipid metabolism.<h4>Methodology/principal findings</h4>GeneChip Porcine Genome arrays (Affymetrix) were used to determine the mRNA expression levels of gluteus medius samples from 105 Duroc barrows. A whole-genome eQTL scan was carried out with a panel of 116 microsatellites. Results allowed us to detect 613 genome-wide significant eQTL unevenly distributed across the pig genome. A clear predominance of trans- over cis-eQTL, was observed. Moreover, 11 trans-regulatory hotspots affecting the expression levels of four to 16 genes were identified. A Gene Ontology study showed that regulatory polymorphisms affected the expression of muscle development and lipid metabolism genes. A number of positional concordances between eQTL and lipid trait QTL were also found, whereas limited evidence of a linear relationship between muscle fat deposition and mRNA levels of eQTL regulated genes was obtained.<h4>Conclusions/significance</h4>Our data provide substantial evidence that there is a remarkable amount of within-breed genetic variation affecting muscle mRNA expression. Most of this variation acts in trans and influences biological processes related with muscle development, lipid deposition and energy balance. The identification of the underlying causal mutations and the ascertainment of their effects on phenotypes would allow gaining a fundamental perspective about how complex traits are built at the molecular level.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22545120/?tool=EBI
work_keys_str_mv AT angelacanovas segregationofregulatorypolymorphismswitheffectsonthegluteusmediustranscriptomeinapurebredpigpopulation
AT ramonanpena segregationofregulatorypolymorphismswitheffectsonthegluteusmediustranscriptomeinapurebredpigpopulation
AT davidgallardo segregationofregulatorypolymorphismswitheffectsonthegluteusmediustranscriptomeinapurebredpigpopulation
AT oscarramirez segregationofregulatorypolymorphismswitheffectsonthegluteusmediustranscriptomeinapurebredpigpopulation
AT marcelamills segregationofregulatorypolymorphismswitheffectsonthegluteusmediustranscriptomeinapurebredpigpopulation
AT raquelquintanilla segregationofregulatorypolymorphismswitheffectsonthegluteusmediustranscriptomeinapurebredpigpopulation
_version_ 1714809959381729280