Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment

Free space optical communications (FSO), which make use of the visible and infrared spectrum for data transmission, offer significant advantages such as a very high data rate, security and immunity, low cost of installation and ease of use without any license restrictions. However, a significant cha...

Full description

Bibliographic Details
Main Authors: Antonios Lionis, Konstantinos Peppas, Hector E. Nistazakis, Andreas D. Tsigopoulos, Keith Cohn
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/7/1109
Description
Summary:Free space optical communications (FSO), which make use of the visible and infrared spectrum for data transmission, offer significant advantages such as a very high data rate, security and immunity, low cost of installation and ease of use without any license restrictions. However, a significant challenge for FSO systems is their inherent constraints due to environmental conditions and especially atmospheric turbulence. This paper focuses on the experimental performance analysis of a real FSO system in a maritime environment. We propose a new model which allows an FSO link performance estimation over sea and depends upon point measurements of environmental parameters. The Received Signal Strength Indicator (RSSI) has been measured and a second-order polynomial has been constructed using regression modeling to quantify its relation with macroscopic environmental parameters collected by a weather station. This model has then been validated against real meteorological data over different period of times and exhibited a reasonably strong correlation. Atmospheric turbulence has been determined using bulk estimates of the structure index parameter extracted from the same meteorological data, and thus allowed for a statistical correlation between turbulence and RSSI. In the second part of the paper, the probability distribution of the RSSI data has been investigated and the Kullback-Leibler (KL) divergence has been used to investigate the difference between probability distributions over the same variable. As an illustrative example of the process, the Weibull, Lognormal and Gamma distributions have been evaluated against the RSSI data probability distribution and the latter has proved to exhibit the best fit.
ISSN:2079-9292