A Realizable Quantum Three-Pass Protocol Authentication Based on Hill-Cipher Algorithm
A realizable quantum three-pass protocol authentication based on Hill-cipher algorithm is presented by encoded and decoded plaintext using classical Hill-cipher algorithm. It is shown that the encoded message transferred to the particles called quantum state where we assumed that a photon is used as...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2015/481824 |
Summary: | A realizable quantum three-pass protocol authentication based on Hill-cipher algorithm is presented by encoded and decoded plaintext using classical Hill-cipher algorithm. It is shown that the encoded message transferred to the particles called quantum state where we assumed that a photon is used as a qubit and after the encoded message is transferred into photons, the polarization of each photon is rotated by an angle θj, which is chosen randomly for each qubit. The sender and receiver agree over a Hill-cipher key, the encryption occurs by utilization of the quantum three-pass protocol (QTPP), the decryption will be illustrated, and an example shows how the algorithm will work. Finally, the security of this algorithm is analyzed in detail. |
---|---|
ISSN: | 1024-123X 1563-5147 |