Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas

Motional Stark effect (MSE) spectroscopy represents a unique diagnostic tool capable of determining the magnitude of the magnetic field and its direction in the core of fusion plasmas. The primary excitation channel for fast hydrogen atoms in injected neutral beams, with energy in the range of 25&am...

Full description

Bibliographic Details
Main Authors: Oleksandr Marchuk, David R. Schultz, Yuri Ralchenko
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/8/1/8
id doaj-e5991b408d1248539971c2a917da4de6
record_format Article
spelling doaj-e5991b408d1248539971c2a917da4de62020-11-25T02:03:34ZengMDPI AGAtoms2218-20042020-02-0181810.3390/atoms8010008atoms8010008Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion PlasmasOleksandr Marchuk0David R. Schultz1Yuri Ralchenko2Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyDepartment of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ 86011, USAAtomic Spectroscopy Group, National Institute of Standards and Technology, Gaithersburg, MD 20899-8422, USAMotional Stark effect (MSE) spectroscopy represents a unique diagnostic tool capable of determining the magnitude of the magnetic field and its direction in the core of fusion plasmas. The primary excitation channel for fast hydrogen atoms in injected neutral beams, with energy in the range of 25&#8722;1000 keV, is due to collisions with protons and impurity ions (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> and heavier impurities). As a result of such excitation, at the particle density of 10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>13</mn> </msup> </semantics> </math> </inline-formula>&#8722;10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula> cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> </inline-formula>, the line intensities of the Stark multiplets do not follow statistical expectations (i.e., the populations of fine-structure levels within the same principal quantum number <i>n</i> are not proportional to their statistical weights). Hence, any realistic modeling of MSE spectra has to include the relevant collisional atomic data. In this paper we provide a general expression for the excitation cross sections in parabolic states within <i>n</i> = 3 for an arbitrary orientation between the direction of the motion-induced electric field and the proton-atom collisional axis. The calculations make use of the density matrix obtained with the atomic orbital close coupling method and the method can be applied to other collisional systems (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, Be<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>6</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, etc.). The resulting cross sections are given as simple fits that can be directly applied to spectral modeling. For illustration we note that the asymmetry detected in the first classical cathode ray experiments between the red- and blue-shifted spectral components can be quantitatively studied using the proposed approach.https://www.mdpi.com/2218-2004/8/1/8motional stark effectcathode raysfusion plasmasplasma spectroscopydensity matrixion-atom collisions
collection DOAJ
language English
format Article
sources DOAJ
author Oleksandr Marchuk
David R. Schultz
Yuri Ralchenko
spellingShingle Oleksandr Marchuk
David R. Schultz
Yuri Ralchenko
Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas
Atoms
motional stark effect
cathode rays
fusion plasmas
plasma spectroscopy
density matrix
ion-atom collisions
author_facet Oleksandr Marchuk
David R. Schultz
Yuri Ralchenko
author_sort Oleksandr Marchuk
title Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas
title_short Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas
title_full Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas
title_fullStr Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas
title_full_unstemmed Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas
title_sort atomic data for calculation of the intensities of stark components of excited hydrogen atoms in fusion plasmas
publisher MDPI AG
series Atoms
issn 2218-2004
publishDate 2020-02-01
description Motional Stark effect (MSE) spectroscopy represents a unique diagnostic tool capable of determining the magnitude of the magnetic field and its direction in the core of fusion plasmas. The primary excitation channel for fast hydrogen atoms in injected neutral beams, with energy in the range of 25&#8722;1000 keV, is due to collisions with protons and impurity ions (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> and heavier impurities). As a result of such excitation, at the particle density of 10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>13</mn> </msup> </semantics> </math> </inline-formula>&#8722;10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula> cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> </inline-formula>, the line intensities of the Stark multiplets do not follow statistical expectations (i.e., the populations of fine-structure levels within the same principal quantum number <i>n</i> are not proportional to their statistical weights). Hence, any realistic modeling of MSE spectra has to include the relevant collisional atomic data. In this paper we provide a general expression for the excitation cross sections in parabolic states within <i>n</i> = 3 for an arbitrary orientation between the direction of the motion-induced electric field and the proton-atom collisional axis. The calculations make use of the density matrix obtained with the atomic orbital close coupling method and the method can be applied to other collisional systems (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, Be<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>6</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, etc.). The resulting cross sections are given as simple fits that can be directly applied to spectral modeling. For illustration we note that the asymmetry detected in the first classical cathode ray experiments between the red- and blue-shifted spectral components can be quantitatively studied using the proposed approach.
topic motional stark effect
cathode rays
fusion plasmas
plasma spectroscopy
density matrix
ion-atom collisions
url https://www.mdpi.com/2218-2004/8/1/8
work_keys_str_mv AT oleksandrmarchuk atomicdataforcalculationoftheintensitiesofstarkcomponentsofexcitedhydrogenatomsinfusionplasmas
AT davidrschultz atomicdataforcalculationoftheintensitiesofstarkcomponentsofexcitedhydrogenatomsinfusionplasmas
AT yuriralchenko atomicdataforcalculationoftheintensitiesofstarkcomponentsofexcitedhydrogenatomsinfusionplasmas
_version_ 1724947367341326336