Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas
Motional Stark effect (MSE) spectroscopy represents a unique diagnostic tool capable of determining the magnitude of the magnetic field and its direction in the core of fusion plasmas. The primary excitation channel for fast hydrogen atoms in injected neutral beams, with energy in the range of 25&am...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Atoms |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-2004/8/1/8 |
id |
doaj-e5991b408d1248539971c2a917da4de6 |
---|---|
record_format |
Article |
spelling |
doaj-e5991b408d1248539971c2a917da4de62020-11-25T02:03:34ZengMDPI AGAtoms2218-20042020-02-0181810.3390/atoms8010008atoms8010008Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion PlasmasOleksandr Marchuk0David R. Schultz1Yuri Ralchenko2Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyDepartment of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ 86011, USAAtomic Spectroscopy Group, National Institute of Standards and Technology, Gaithersburg, MD 20899-8422, USAMotional Stark effect (MSE) spectroscopy represents a unique diagnostic tool capable of determining the magnitude of the magnetic field and its direction in the core of fusion plasmas. The primary excitation channel for fast hydrogen atoms in injected neutral beams, with energy in the range of 25−1000 keV, is due to collisions with protons and impurity ions (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> and heavier impurities). As a result of such excitation, at the particle density of 10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>13</mn> </msup> </semantics> </math> </inline-formula>−10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula> cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> </inline-formula>, the line intensities of the Stark multiplets do not follow statistical expectations (i.e., the populations of fine-structure levels within the same principal quantum number <i>n</i> are not proportional to their statistical weights). Hence, any realistic modeling of MSE spectra has to include the relevant collisional atomic data. In this paper we provide a general expression for the excitation cross sections in parabolic states within <i>n</i> = 3 for an arbitrary orientation between the direction of the motion-induced electric field and the proton-atom collisional axis. The calculations make use of the density matrix obtained with the atomic orbital close coupling method and the method can be applied to other collisional systems (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, Be<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>6</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, etc.). The resulting cross sections are given as simple fits that can be directly applied to spectral modeling. For illustration we note that the asymmetry detected in the first classical cathode ray experiments between the red- and blue-shifted spectral components can be quantitatively studied using the proposed approach.https://www.mdpi.com/2218-2004/8/1/8motional stark effectcathode raysfusion plasmasplasma spectroscopydensity matrixion-atom collisions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Oleksandr Marchuk David R. Schultz Yuri Ralchenko |
spellingShingle |
Oleksandr Marchuk David R. Schultz Yuri Ralchenko Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas Atoms motional stark effect cathode rays fusion plasmas plasma spectroscopy density matrix ion-atom collisions |
author_facet |
Oleksandr Marchuk David R. Schultz Yuri Ralchenko |
author_sort |
Oleksandr Marchuk |
title |
Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas |
title_short |
Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas |
title_full |
Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas |
title_fullStr |
Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas |
title_full_unstemmed |
Atomic Data for Calculation of the Intensities of Stark Components of Excited Hydrogen Atoms in Fusion Plasmas |
title_sort |
atomic data for calculation of the intensities of stark components of excited hydrogen atoms in fusion plasmas |
publisher |
MDPI AG |
series |
Atoms |
issn |
2218-2004 |
publishDate |
2020-02-01 |
description |
Motional Stark effect (MSE) spectroscopy represents a unique diagnostic tool capable of determining the magnitude of the magnetic field and its direction in the core of fusion plasmas. The primary excitation channel for fast hydrogen atoms in injected neutral beams, with energy in the range of 25−1000 keV, is due to collisions with protons and impurity ions (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula> and heavier impurities). As a result of such excitation, at the particle density of 10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>13</mn> </msup> </semantics> </math> </inline-formula>−10<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula> cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>-</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> </inline-formula>, the line intensities of the Stark multiplets do not follow statistical expectations (i.e., the populations of fine-structure levels within the same principal quantum number <i>n</i> are not proportional to their statistical weights). Hence, any realistic modeling of MSE spectra has to include the relevant collisional atomic data. In this paper we provide a general expression for the excitation cross sections in parabolic states within <i>n</i> = 3 for an arbitrary orientation between the direction of the motion-induced electric field and the proton-atom collisional axis. The calculations make use of the density matrix obtained with the atomic orbital close coupling method and the method can be applied to other collisional systems (e.g., He<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, Be<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, C<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mn>6</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> </inline-formula>, etc.). The resulting cross sections are given as simple fits that can be directly applied to spectral modeling. For illustration we note that the asymmetry detected in the first classical cathode ray experiments between the red- and blue-shifted spectral components can be quantitatively studied using the proposed approach. |
topic |
motional stark effect cathode rays fusion plasmas plasma spectroscopy density matrix ion-atom collisions |
url |
https://www.mdpi.com/2218-2004/8/1/8 |
work_keys_str_mv |
AT oleksandrmarchuk atomicdataforcalculationoftheintensitiesofstarkcomponentsofexcitedhydrogenatomsinfusionplasmas AT davidrschultz atomicdataforcalculationoftheintensitiesofstarkcomponentsofexcitedhydrogenatomsinfusionplasmas AT yuriralchenko atomicdataforcalculationoftheintensitiesofstarkcomponentsofexcitedhydrogenatomsinfusionplasmas |
_version_ |
1724947367341326336 |