A hybrid cost-sensitive ensemble for heart disease prediction

Abstract Background Heart disease is the primary cause of morbidity and mortality in the world. It includes numerous problems and symptoms. The diagnosis of heart disease is difficult because there are too many factors to analyze. What’s more, the misclassification cost could be very high. Methods A...

Full description

Bibliographic Details
Main Authors: Qi Zhenya, Zuoru Zhang
Format: Article
Language:English
Published: BMC 2021-02-01
Series:BMC Medical Informatics and Decision Making
Subjects:
Online Access:https://doi.org/10.1186/s12911-021-01436-7
Description
Summary:Abstract Background Heart disease is the primary cause of morbidity and mortality in the world. It includes numerous problems and symptoms. The diagnosis of heart disease is difficult because there are too many factors to analyze. What’s more, the misclassification cost could be very high. Methods A cost-sensitive ensemble method was proposed to improve the efficiency of diagnosis and reduce the misclassification cost. The proposed method contains five heterogeneous classifiers: random forest, logistic regression, support vector machine, extreme learning machine and k-nearest neighbor. T-test was used to investigate if the performance of the ensemble was better than individual classifiers and the contribution of Relief algorithm. Results The best performance was achieved by the proposed method according to ten-fold cross validation. The statistical tests demonstrated that the performance of the proposed ensemble was significantly superior to individual classifiers, and the efficiency of classification was distinctively improved by Relief algorithm. Conclusions The proposed ensemble gained significantly better results compared with individual classifiers and previous studies, which implies that it can be used as a promising alternative tool in medical decision making for heart disease diagnosis.
ISSN:1472-6947