On the Integrability of the SIR Epidemic Model with Vital Dynamics
In this paper, we study the SIR epidemic model with vital dynamics Ṡ=−βSI+μN−S,İ=βSI−γ+μI,Ṙ=γI−μR, from the point of view of integrability. In the case of the death/birth rate μ=0, the SIR model is integrable, and we provide its general solutions by implicit functions, two Lax formulations and in...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2020/5869275 |
Summary: | In this paper, we study the SIR epidemic model with vital dynamics Ṡ=−βSI+μN−S,İ=βSI−γ+μI,Ṙ=γI−μR, from the point of view of integrability. In the case of the death/birth rate μ=0, the SIR model is integrable, and we provide its general solutions by implicit functions, two Lax formulations and infinitely many Hamilton-Poisson realizations. In the case of μ≠0, we prove that the SIR model has no polynomial or proper rational first integrals by studying the invariant algebraic surfaces. Moreover, although the SIR model with μ≠0 is not integrable and we cannot get its exact solution, based on the existence of an invariant algebraic surface, we give the global dynamics of the SIR model with μ≠0. |
---|---|
ISSN: | 1687-9120 1687-9139 |