Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States.
<h4>Background</h4>Escherichia coli is a major cause of neonatal sepsis. Contemporary antibiotic resistance data and molecular characterization of neonatal E. coli bacteremia isolates in the US are limited.<h4>Methods</h4>E. coli blood isolates, antibiotic susceptibility data...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0219352 |
id |
doaj-e569862fed65480ea07fb1f2158c5e15 |
---|---|
record_format |
Article |
spelling |
doaj-e569862fed65480ea07fb1f2158c5e152021-03-04T10:28:33ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01147e021935210.1371/journal.pone.0219352Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States.Bryan K ColeMarko IlikjCindy B McCloskeySusana Chavez-Bueno<h4>Background</h4>Escherichia coli is a major cause of neonatal sepsis. Contemporary antibiotic resistance data and molecular characterization of neonatal E. coli bacteremia isolates in the US are limited.<h4>Methods</h4>E. coli blood isolates, antibiotic susceptibility data, and clinical characteristics were obtained from prospectively identified newborns from 2006 to 2016. The E. coli isolates were classified using an updated phylogrouping method and multi-locus sequence typing. The presence of several virulence traits was also determined.<h4>Results</h4>Forty-three newborns with E. coli bacteremia were identified. Mean gestational age was 32.3 (SD±5.4) weeks. Median age was 7 days (interquartile range 0-10). Mortality (28%) occurred exclusively in preterm newborns. Resistance to ampicillin was 67%, to gentamicin was 14%, and to ceftriaxone was 2%; one isolate produced extended-spectrum beta lactamases. Phylogroup B2 predominated. Sequence type (ST) 95 and ST131 prevailed; ST1193 emerged recently. All isolates carried fimH, nlpI, and ompA, and 46% carried the K1 capsule. E. coli from newborns with bacteremia diagnosed at <72 hours old had more virulence genes compared to E. coli from newborns ≥ 72 hours old. The hek/hra gene was more frequent in isolates from newborns who died than in isolates from survivors.<h4>Conclusion</h4>Antibiotic resistance in E. coli was prevalent in this large collection of bacteremia isolates from US newborns. Most strains belonged to distinctive extra-intestinal pathogenic E. coil phylogroups and STs. Further characterization of virulence genes in neonatal E. coli bacteremia strains is needed in larger numbers and in more geographically diverse areas.https://doi.org/10.1371/journal.pone.0219352 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bryan K Cole Marko Ilikj Cindy B McCloskey Susana Chavez-Bueno |
spellingShingle |
Bryan K Cole Marko Ilikj Cindy B McCloskey Susana Chavez-Bueno Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. PLoS ONE |
author_facet |
Bryan K Cole Marko Ilikj Cindy B McCloskey Susana Chavez-Bueno |
author_sort |
Bryan K Cole |
title |
Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. |
title_short |
Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. |
title_full |
Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. |
title_fullStr |
Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. |
title_full_unstemmed |
Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. |
title_sort |
antibiotic resistance and molecular characterization of bacteremia escherichia coli isolates from newborns in the united states. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2019-01-01 |
description |
<h4>Background</h4>Escherichia coli is a major cause of neonatal sepsis. Contemporary antibiotic resistance data and molecular characterization of neonatal E. coli bacteremia isolates in the US are limited.<h4>Methods</h4>E. coli blood isolates, antibiotic susceptibility data, and clinical characteristics were obtained from prospectively identified newborns from 2006 to 2016. The E. coli isolates were classified using an updated phylogrouping method and multi-locus sequence typing. The presence of several virulence traits was also determined.<h4>Results</h4>Forty-three newborns with E. coli bacteremia were identified. Mean gestational age was 32.3 (SD±5.4) weeks. Median age was 7 days (interquartile range 0-10). Mortality (28%) occurred exclusively in preterm newborns. Resistance to ampicillin was 67%, to gentamicin was 14%, and to ceftriaxone was 2%; one isolate produced extended-spectrum beta lactamases. Phylogroup B2 predominated. Sequence type (ST) 95 and ST131 prevailed; ST1193 emerged recently. All isolates carried fimH, nlpI, and ompA, and 46% carried the K1 capsule. E. coli from newborns with bacteremia diagnosed at <72 hours old had more virulence genes compared to E. coli from newborns ≥ 72 hours old. The hek/hra gene was more frequent in isolates from newborns who died than in isolates from survivors.<h4>Conclusion</h4>Antibiotic resistance in E. coli was prevalent in this large collection of bacteremia isolates from US newborns. Most strains belonged to distinctive extra-intestinal pathogenic E. coil phylogroups and STs. Further characterization of virulence genes in neonatal E. coli bacteremia strains is needed in larger numbers and in more geographically diverse areas. |
url |
https://doi.org/10.1371/journal.pone.0219352 |
work_keys_str_mv |
AT bryankcole antibioticresistanceandmolecularcharacterizationofbacteremiaescherichiacoliisolatesfromnewbornsintheunitedstates AT markoilikj antibioticresistanceandmolecularcharacterizationofbacteremiaescherichiacoliisolatesfromnewbornsintheunitedstates AT cindybmccloskey antibioticresistanceandmolecularcharacterizationofbacteremiaescherichiacoliisolatesfromnewbornsintheunitedstates AT susanachavezbueno antibioticresistanceandmolecularcharacterizationofbacteremiaescherichiacoliisolatesfromnewbornsintheunitedstates |
_version_ |
1714805890810380288 |