The correlation between the central carbon metabolic flux distribution and the number of shared enzyme regulators in Saccharomyces cerevisiae

The central carbon metabolic system is the upstream energy source for microbial fermentation. In addition, it is a master switch for increasing the production of metabolites and an important part of the microbial metabolic network. Investigation into the relationship between genes, environmental fac...

Full description

Bibliographic Details
Main Authors: Xiangfei Zhou, Lunxian Liu, Chuanyu Shang, Haifeng Xu, Chao Ding, Qian Liu, Yin Yi
Format: Article
Language:English
Published: Instituto de Tecnologia do Paraná (Tecpar) 2016-05-01
Series:Brazilian Archives of Biology and Technology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132016000100415&lng=en&tlng=en
Description
Summary:The central carbon metabolic system is the upstream energy source for microbial fermentation. In addition, it is a master switch for increasing the production of metabolites and an important part of the microbial metabolic network. Investigation into the relationship between genes, environmental factors, and metabolic networks is a main focus of systems biology, which significantly impacts research in biochemistry, metabolic engineering, and synthetic biology. To this end, the central carbon metabolic flux under a variety of growth conditions or using strains with various genetic modifications was previously measured in Saccharomyces cerevisiae using 13C tracer technology. However, the measured values were not integrated and investigated further. In this study, we collected and analyzed the metabolic flux rates of the central carbon metabolic system in S. cerevisiae measured in recent studies. We carried out preliminary analyses of flux values of each pathway, performed regression analyses on relationship between different fluxes, and extracted principal component factors of the flux variables. Based on the results, the general characteristics of pathway flux distribution were clustered and explored, and the effects of environmental and genetic factors on the flux distribution were analyzed. Furthermore, this study explored the relationship between similarity in the enzyme's transcriptional regulation and the correlations in the enzyme's reaction flux. Our results provide a foundation for further studies on the control of the central carbon metabolic flux and facilitate the search for targets in metabolic engineering research.
ISSN:1678-4324