An efficient quantum algorithm for the time evolution of parameterized circuits

We introduce a novel hybrid algorithm to simulate the real-time evolution of quantum systems using parameterized quantum circuits. The method, named "projected – Variational Quantum Dynamics" (p-VQD) realizes an iterative, global projection of the exact time evolution onto the parameterize...

Full description

Bibliographic Details
Main Authors: Stefano Barison, Filippo Vicentini, Giuseppe Carleo
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021-07-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2021-07-28-512/pdf/
id doaj-e54a760492114db2bd99706dcb4d21ea
record_format Article
spelling doaj-e54a760492114db2bd99706dcb4d21ea2021-07-28T10:14:10ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2021-07-01551210.22331/q-2021-07-28-51210.22331/q-2021-07-28-512An efficient quantum algorithm for the time evolution of parameterized circuitsStefano BarisonFilippo VicentiniGiuseppe CarleoWe introduce a novel hybrid algorithm to simulate the real-time evolution of quantum systems using parameterized quantum circuits. The method, named "projected – Variational Quantum Dynamics" (p-VQD) realizes an iterative, global projection of the exact time evolution onto the parameterized manifold. In the small time-step limit, this is equivalent to the McLachlan's variational principle. Our approach is efficient in the sense that it exhibits an optimal linear scaling with the total number of variational parameters. Furthermore, it is global in the sense that it uses the variational principle to optimize all parameters at once. The global nature of our approach then significantly extends the scope of existing efficient variational methods, that instead typically rely on the iterative optimization of a restricted subset of variational parameters. Through numerical experiments, we also show that our approach is particularly advantageous over existing global optimization algorithms based on the time-dependent variational principle that, due to a demanding quadratic scaling with parameter numbers, are unsuitable for large parameterized quantum circuits.https://quantum-journal.org/papers/q-2021-07-28-512/pdf/
collection DOAJ
language English
format Article
sources DOAJ
author Stefano Barison
Filippo Vicentini
Giuseppe Carleo
spellingShingle Stefano Barison
Filippo Vicentini
Giuseppe Carleo
An efficient quantum algorithm for the time evolution of parameterized circuits
Quantum
author_facet Stefano Barison
Filippo Vicentini
Giuseppe Carleo
author_sort Stefano Barison
title An efficient quantum algorithm for the time evolution of parameterized circuits
title_short An efficient quantum algorithm for the time evolution of parameterized circuits
title_full An efficient quantum algorithm for the time evolution of parameterized circuits
title_fullStr An efficient quantum algorithm for the time evolution of parameterized circuits
title_full_unstemmed An efficient quantum algorithm for the time evolution of parameterized circuits
title_sort efficient quantum algorithm for the time evolution of parameterized circuits
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
series Quantum
issn 2521-327X
publishDate 2021-07-01
description We introduce a novel hybrid algorithm to simulate the real-time evolution of quantum systems using parameterized quantum circuits. The method, named "projected – Variational Quantum Dynamics" (p-VQD) realizes an iterative, global projection of the exact time evolution onto the parameterized manifold. In the small time-step limit, this is equivalent to the McLachlan's variational principle. Our approach is efficient in the sense that it exhibits an optimal linear scaling with the total number of variational parameters. Furthermore, it is global in the sense that it uses the variational principle to optimize all parameters at once. The global nature of our approach then significantly extends the scope of existing efficient variational methods, that instead typically rely on the iterative optimization of a restricted subset of variational parameters. Through numerical experiments, we also show that our approach is particularly advantageous over existing global optimization algorithms based on the time-dependent variational principle that, due to a demanding quadratic scaling with parameter numbers, are unsuitable for large parameterized quantum circuits.
url https://quantum-journal.org/papers/q-2021-07-28-512/pdf/
work_keys_str_mv AT stefanobarison anefficientquantumalgorithmforthetimeevolutionofparameterizedcircuits
AT filippovicentini anefficientquantumalgorithmforthetimeevolutionofparameterizedcircuits
AT giuseppecarleo anefficientquantumalgorithmforthetimeevolutionofparameterizedcircuits
AT stefanobarison efficientquantumalgorithmforthetimeevolutionofparameterizedcircuits
AT filippovicentini efficientquantumalgorithmforthetimeevolutionofparameterizedcircuits
AT giuseppecarleo efficientquantumalgorithmforthetimeevolutionofparameterizedcircuits
_version_ 1721278852002480128