Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expressio...

Full description

Bibliographic Details
Main Authors: Cora S. Thiel, Swantje Hauschild, Svantje Tauber, Katrin Paulsen, Christiane Raig, Arnold Raem, Josefine Biskup, Annett Gutewort, Eva Hürlimann, Felix Unverdorben, Isabell Buttron, Beatrice Lauber, Claudia Philpot, Hartwin Lier, Frank Engelmann, Liliana E. Layer, Oliver Ullrich
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2015/363575
Description
Summary:Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.
ISSN:2314-6133
2314-6141