Formal Lagrangian Operad

Given a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a defo...

Full description

Bibliographic Details
Main Authors: Alberto S. Cattaneo, Benoit Dherin, Giovanni Felder
Format: Article
Language:English
Published: Hindawi Limited 2010-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2010/643605
id doaj-e52427db8fe44dfba83378d471146c21
record_format Article
spelling doaj-e52427db8fe44dfba83378d471146c212020-11-24T21:20:57ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252010-01-01201010.1155/2010/643605643605Formal Lagrangian OperadAlberto S. Cattaneo0Benoit Dherin1Giovanni Felder2Institut für Mathematik, Universität Zürich—Irchel, Winterthurerstraße 190, 8057 Zürich, SwitzerlandDepartment of Mathematics, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The NetherlandsD-MATH, ETH-Zentrum, 8092 Zürich, SwitzerlandGiven a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a deformation theory for symplectic groupoids analog to the deformation theory of algebras. It turns out that the semiclassical part of Kontsevich's deformation of C∞(ℝd) is a deformation of the trivial symplectic groupoid structure of T∗ℝd.http://dx.doi.org/10.1155/2010/643605
collection DOAJ
language English
format Article
sources DOAJ
author Alberto S. Cattaneo
Benoit Dherin
Giovanni Felder
spellingShingle Alberto S. Cattaneo
Benoit Dherin
Giovanni Felder
Formal Lagrangian Operad
International Journal of Mathematics and Mathematical Sciences
author_facet Alberto S. Cattaneo
Benoit Dherin
Giovanni Felder
author_sort Alberto S. Cattaneo
title Formal Lagrangian Operad
title_short Formal Lagrangian Operad
title_full Formal Lagrangian Operad
title_fullStr Formal Lagrangian Operad
title_full_unstemmed Formal Lagrangian Operad
title_sort formal lagrangian operad
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2010-01-01
description Given a symplectic manifold M, we may define an operad structure on the the spaces Ok of the Lagrangian submanifolds of (M¯)k×M via symplectic reduction. If M is also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a deformation theory for symplectic groupoids analog to the deformation theory of algebras. It turns out that the semiclassical part of Kontsevich's deformation of C∞(ℝd) is a deformation of the trivial symplectic groupoid structure of T∗ℝd.
url http://dx.doi.org/10.1155/2010/643605
work_keys_str_mv AT albertoscattaneo formallagrangianoperad
AT benoitdherin formallagrangianoperad
AT giovannifelder formallagrangianoperad
_version_ 1726001998234386432