Influence of Spacer Grid Outer Strap on Fuel Assembly Thermal Hydraulic Performance
The outer strap as a typical structure of a spacer grid enhances the mechanical strength, decreases hang-up susceptibility, and also influences thermal hydraulic performance, for example, pressure loss, mixing performance, and flow distribution. In the present study, a typical grid spacer with diffe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Science and Technology of Nuclear Installations |
Online Access: | http://dx.doi.org/10.1155/2014/602062 |
Summary: | The outer strap as a typical structure of a spacer grid enhances the mechanical strength, decreases hang-up susceptibility, and also influences thermal hydraulic performance, for example, pressure loss, mixing performance, and flow distribution. In the present study, a typical grid spacer with different outer strap designs is adopted to investigate the influence of outer strap design on fuel assembly thermal hydraulic performance by using a commercial computational fluid dynamics (CFD) code, ANSYS CFX, and a subchannel analysis code, FLICA. To simulate the outer straps’ influence between fuel assemblies downstream, four quarter-bundles from neighboring fuel assemblies are constructed to form the computational domain. The results show that the outer strap design has a major impact on cross-flow between fuel assemblies and temperature distribution within the fuel assembly. |
---|---|
ISSN: | 1687-6075 1687-6083 |