Novolac/Phenol-Containing Phthalonitrile Blends: Curing Characteristics and Composite Mechanical Properties

The phenol-containing phthalonitrile resin is a kind of self-curing phthalonitrile resin with high-temperature resistance and excellent properties. However, the onefold phthalonitrile resin is unattainable to cured completely, and the brittleness of the cured product is non-negligible. This paper fo...

Full description

Bibliographic Details
Main Authors: Hanqi Zhang, Bing Wang, Yanna Wang, Heng Zhou
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/1/126
Description
Summary:The phenol-containing phthalonitrile resin is a kind of self-curing phthalonitrile resin with high-temperature resistance and excellent properties. However, the onefold phthalonitrile resin is unattainable to cured completely, and the brittleness of the cured product is non-negligible. This paper focuses on solving the above problems by blending novolac resin into phenol-containing phthalonitrile. Under the action of abundant hydroxyl group, the initial curing temperature and gelation time at 170 °C decrease by 88 °C and 2820 s, respectively, monitored by DSC and rheological analysis. FT-IR spectra of copolymers showed that the addition of novolac increased the conversion rate of nitrile. When the novolac mass fraction is 10%, the peak of nitrile group disappears, which means the complete reaction. The mechanical test of blends composites shows that the maximum fracture strain of 10 wt% novolac addition is 122% higher than those of neat phthalonitrile composites on account of the introduction of flexible novolac chain segments. The mechanical properties are sensitive to elevated post-cured temperature; this is consistent with the result of morphological investigation using SEM. Finally, the dynamic mechanical analysis indicated that the glass transition temperature heightened with the increase of novolac content and post-curing temperature.
ISSN:2073-4360