Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow

In this paper it is proposed to solve a visual problem of recognizing a handwritten figure. A machine learning technique will be used in which a result is produced based on previous experience. It will be seen how, starting with input values and output values (called labels), the computer begins to...

Full description

Bibliographic Details
Main Author: Paul TEODORESCU
Format: Article
Language:English
Published: ICI Publishing House 2019-12-01
Series:Revista Română de Informatică și Automatică
Subjects:
Online Access:https://rria.ici.ro/wp-content/uploads/2019/12/04-art.-Teodorescu.pdf
id doaj-e4d2c9ab42da41159f2b191d05def5e9
record_format Article
spelling doaj-e4d2c9ab42da41159f2b191d05def5e92020-11-25T02:17:54ZengICI Publishing HouseRevista Română de Informatică și Automatică1220-17581841-43032019-12-01294476210.33436/v29i4y201904Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlowPaul TEODORESCU0Institutul Naţional de Cercetare-Dezvoltare în Informatică – ICI BucureștiIn this paper it is proposed to solve a visual problem of recognizing a handwritten figure. A machine learning technique will be used in which a result is produced based on previous experience. It will be seen how, starting with input values and output values (called labels), the computer begins to correctly recognize the output value (in this case a figure), through the model built in the technique called supervised learning. So the goal is to guess/predict the output value for a new input value (in other words to map each input image to the correct numeric digit), once the model is known. The key in choosing a correct algorithm for solving a problem through supervised learning technology is the correct identification of the methodology to be used, i.e. the answer to the question: „is it a regression or is it a classification problem?”. In the case presented here, it is desired to guess the category or class (which has a fixed number of possible values, also called discrete values) of which those input data (practically handwritten figures) are part of. In order for the computer to resolve the classification of manually written numbers (it has been established that it will work with 10 classes, which represent the numbers from 0 to 9), a 4-layer convolutional neural network will be used together with the instrument called TensorFlow which brings with it a whole artificial intelligence library. Since the understanding of TensorFlow technology requires an extra effort (because its strange logic), this article will attempt to explain it using an already classic example. At the base of this example is a database called MNIST (Modified National Institute of Standards and Technology) that contains a lot of pictures representing the numbers from 0 to 9 manually written in a very wide palette. By feeding the neural network with these tens of thousands of images, the model built by TensorFlow will learn to guess the number represented in that image.https://rria.ici.ro/wp-content/uploads/2019/12/04-art.-Teodorescu.pdflibraryvectortensorvariablesmatrixoptimizerbackpropagationforward propagation
collection DOAJ
language English
format Article
sources DOAJ
author Paul TEODORESCU
spellingShingle Paul TEODORESCU
Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow
Revista Română de Informatică și Automatică
library
vector
tensor
variables
matrix
optimizer
backpropagation
forward propagation
author_facet Paul TEODORESCU
author_sort Paul TEODORESCU
title Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow
title_short Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow
title_full Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow
title_fullStr Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow
title_full_unstemmed Recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca TensorFlow
title_sort recunoașterea unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca tensorflow unei cifre scrise de mână folosind o rețea neuronală convoluțională și biblioteca tensorflow
publisher ICI Publishing House
series Revista Română de Informatică și Automatică
issn 1220-1758
1841-4303
publishDate 2019-12-01
description In this paper it is proposed to solve a visual problem of recognizing a handwritten figure. A machine learning technique will be used in which a result is produced based on previous experience. It will be seen how, starting with input values and output values (called labels), the computer begins to correctly recognize the output value (in this case a figure), through the model built in the technique called supervised learning. So the goal is to guess/predict the output value for a new input value (in other words to map each input image to the correct numeric digit), once the model is known. The key in choosing a correct algorithm for solving a problem through supervised learning technology is the correct identification of the methodology to be used, i.e. the answer to the question: „is it a regression or is it a classification problem?”. In the case presented here, it is desired to guess the category or class (which has a fixed number of possible values, also called discrete values) of which those input data (practically handwritten figures) are part of. In order for the computer to resolve the classification of manually written numbers (it has been established that it will work with 10 classes, which represent the numbers from 0 to 9), a 4-layer convolutional neural network will be used together with the instrument called TensorFlow which brings with it a whole artificial intelligence library. Since the understanding of TensorFlow technology requires an extra effort (because its strange logic), this article will attempt to explain it using an already classic example. At the base of this example is a database called MNIST (Modified National Institute of Standards and Technology) that contains a lot of pictures representing the numbers from 0 to 9 manually written in a very wide palette. By feeding the neural network with these tens of thousands of images, the model built by TensorFlow will learn to guess the number represented in that image.
topic library
vector
tensor
variables
matrix
optimizer
backpropagation
forward propagation
url https://rria.ici.ro/wp-content/uploads/2019/12/04-art.-Teodorescu.pdf
work_keys_str_mv AT paulteodorescu recunoastereauneicifrescrisedemanafolosindoreteaneuronalaconvolutionalasibibliotecatensorflowuneicifrescrisedemanafolosindoreteaneuronalaconvolutionalasibibliotecatensorflow
_version_ 1724884327892779008