A Review on Advanced Sensing Materials for Agricultural Gas Sensors

This work is a comprehensive review of sensing materials, which interact with several target gases pertinent to agricultural monitoring applications. Sensing materials which interact with carbon dioxide, water vapor (relative humidity), hydrogen sulfide, ethylene and ethanol are the focus of this wo...

Full description

Bibliographic Details
Main Authors: Calvin Love, Haleh Nazemi, Eman El-Masri, Kenson Ambrose, Michael S. Freund, Arezoo Emadi
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/10/3423
id doaj-e4c4dfabcf27432bafcf526d97d2ea13
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Calvin Love
Haleh Nazemi
Eman El-Masri
Kenson Ambrose
Michael S. Freund
Arezoo Emadi
spellingShingle Calvin Love
Haleh Nazemi
Eman El-Masri
Kenson Ambrose
Michael S. Freund
Arezoo Emadi
A Review on Advanced Sensing Materials for Agricultural Gas Sensors
Sensors
carbon nano-tube (CNT) sensors
chemiresistive gas sensors
fibre-optic
gas sensors
multi-walled carbon nanotubes (MWCNTs)
polymers
author_facet Calvin Love
Haleh Nazemi
Eman El-Masri
Kenson Ambrose
Michael S. Freund
Arezoo Emadi
author_sort Calvin Love
title A Review on Advanced Sensing Materials for Agricultural Gas Sensors
title_short A Review on Advanced Sensing Materials for Agricultural Gas Sensors
title_full A Review on Advanced Sensing Materials for Agricultural Gas Sensors
title_fullStr A Review on Advanced Sensing Materials for Agricultural Gas Sensors
title_full_unstemmed A Review on Advanced Sensing Materials for Agricultural Gas Sensors
title_sort review on advanced sensing materials for agricultural gas sensors
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2021-05-01
description This work is a comprehensive review of sensing materials, which interact with several target gases pertinent to agricultural monitoring applications. Sensing materials which interact with carbon dioxide, water vapor (relative humidity), hydrogen sulfide, ethylene and ethanol are the focus of this work. Performance characteristics such as dynamic range, recovery time, operating temperature, long-term stability and method of deposition are discussed to determine the commercial viability of the sensing materials considered in this work. In addition to the sensing materials, deposition methods are considered to obtain the desired sensing material thickness based on the sensor’s mechanism of operation. Various material classes including metal oxides, conductive polymers and carbon allotropes are included in this review. By implementing multiple sensing materials to detect a single target analyte, the issue of selectivity due to cross sensitivity can be mitigated. For this reason, where possible, it is desirable to utilize more than one sensing material to monitor a single target gas. Among those considered in this work, it is observed that PEDOT PSS/graphene and TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-coated g-C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> NS are best suited for CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> detection, given their wide dynamic range and modest operating temperature. To monitor the presence of ethylene, BMIM-NTf<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>, SWCNTs and PtTiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> offer a dynamic range most suitable for the application and require no active heating. Due to the wide dynamic range offered by SiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>/Si nanowires, this material is best suited for the detection of ethanol; a gas artificially introduced to prolong the shelf life of the harvested crop. Finally, among all other sensing materials investigated, it observed that both SWCNTs and CNTs/SnO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>/CuO are most suitable for H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>S detection in the given application.
topic carbon nano-tube (CNT) sensors
chemiresistive gas sensors
fibre-optic
gas sensors
multi-walled carbon nanotubes (MWCNTs)
polymers
url https://www.mdpi.com/1424-8220/21/10/3423
work_keys_str_mv AT calvinlove areviewonadvancedsensingmaterialsforagriculturalgassensors
AT halehnazemi areviewonadvancedsensingmaterialsforagriculturalgassensors
AT emanelmasri areviewonadvancedsensingmaterialsforagriculturalgassensors
AT kensonambrose areviewonadvancedsensingmaterialsforagriculturalgassensors
AT michaelsfreund areviewonadvancedsensingmaterialsforagriculturalgassensors
AT arezooemadi areviewonadvancedsensingmaterialsforagriculturalgassensors
AT calvinlove reviewonadvancedsensingmaterialsforagriculturalgassensors
AT halehnazemi reviewonadvancedsensingmaterialsforagriculturalgassensors
AT emanelmasri reviewonadvancedsensingmaterialsforagriculturalgassensors
AT kensonambrose reviewonadvancedsensingmaterialsforagriculturalgassensors
AT michaelsfreund reviewonadvancedsensingmaterialsforagriculturalgassensors
AT arezooemadi reviewonadvancedsensingmaterialsforagriculturalgassensors
_version_ 1721415938017853440
spelling doaj-e4c4dfabcf27432bafcf526d97d2ea132021-06-01T00:03:10ZengMDPI AGSensors1424-82202021-05-01213423342310.3390/s21103423A Review on Advanced Sensing Materials for Agricultural Gas SensorsCalvin Love0Haleh Nazemi1Eman El-Masri2Kenson Ambrose3Michael S. Freund4Arezoo Emadi5Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, CanadaDepartment of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, CanadaDepartment of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, CanadaDepartment of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, CanadaDepartment of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, CanadaDepartment of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, CanadaThis work is a comprehensive review of sensing materials, which interact with several target gases pertinent to agricultural monitoring applications. Sensing materials which interact with carbon dioxide, water vapor (relative humidity), hydrogen sulfide, ethylene and ethanol are the focus of this work. Performance characteristics such as dynamic range, recovery time, operating temperature, long-term stability and method of deposition are discussed to determine the commercial viability of the sensing materials considered in this work. In addition to the sensing materials, deposition methods are considered to obtain the desired sensing material thickness based on the sensor’s mechanism of operation. Various material classes including metal oxides, conductive polymers and carbon allotropes are included in this review. By implementing multiple sensing materials to detect a single target analyte, the issue of selectivity due to cross sensitivity can be mitigated. For this reason, where possible, it is desirable to utilize more than one sensing material to monitor a single target gas. Among those considered in this work, it is observed that PEDOT PSS/graphene and TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-coated g-C<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> NS are best suited for CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> detection, given their wide dynamic range and modest operating temperature. To monitor the presence of ethylene, BMIM-NTf<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>, SWCNTs and PtTiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> offer a dynamic range most suitable for the application and require no active heating. Due to the wide dynamic range offered by SiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>/Si nanowires, this material is best suited for the detection of ethanol; a gas artificially introduced to prolong the shelf life of the harvested crop. Finally, among all other sensing materials investigated, it observed that both SWCNTs and CNTs/SnO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>/CuO are most suitable for H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>S detection in the given application.https://www.mdpi.com/1424-8220/21/10/3423carbon nano-tube (CNT) sensorschemiresistive gas sensorsfibre-opticgas sensorsmulti-walled carbon nanotubes (MWCNTs)polymers