Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs
We apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from short...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/16/9/1374 |
id |
doaj-e4c4a6dfcde248eba0ee5a5b3c5c807c |
---|---|
record_format |
Article |
spelling |
doaj-e4c4a6dfcde248eba0ee5a5b3c5c807c2020-11-24T22:17:54ZengMDPI AGSensors1424-82202016-08-01169137410.3390/s16091374s16091374Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic GraphsHelena Gómez-Adorno0Grigori Sidorov1David Pinto2Darnes Vilariño3Alexander Gelbukh4Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz S/N, Mexico City 07738, MexicoInstituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz S/N, Mexico City 07738, MexicoBenemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación, Av. San Claudio y 14 Sur, Puebla 72570, MexicoBenemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación, Av. San Claudio y 14 Sur, Puebla 72570, MexicoInstituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz S/N, Mexico City 07738, MexicoWe apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from shortest path walks over integrated syntactic graphs and apply them to determine the authors of documents. On average, our method outperforms the state of the art approaches and gives consistently high results across different corpora, unlike existing methods. Our results show that our textual patterns are useful for the task of authorship attribution.http://www.mdpi.com/1424-8220/16/9/1374integrated syntactic graphstextual patternsauthorship attributionauthorship verificationshortest paths walkssyntactic n-grams |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Helena Gómez-Adorno Grigori Sidorov David Pinto Darnes Vilariño Alexander Gelbukh |
spellingShingle |
Helena Gómez-Adorno Grigori Sidorov David Pinto Darnes Vilariño Alexander Gelbukh Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs Sensors integrated syntactic graphs textual patterns authorship attribution authorship verification shortest paths walks syntactic n-grams |
author_facet |
Helena Gómez-Adorno Grigori Sidorov David Pinto Darnes Vilariño Alexander Gelbukh |
author_sort |
Helena Gómez-Adorno |
title |
Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs |
title_short |
Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs |
title_full |
Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs |
title_fullStr |
Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs |
title_full_unstemmed |
Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs |
title_sort |
automatic authorship detection using textual patterns extracted from integrated syntactic graphs |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2016-08-01 |
description |
We apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from shortest path walks over integrated syntactic graphs and apply them to determine the authors of documents. On average, our method outperforms the state of the art approaches and gives consistently high results across different corpora, unlike existing methods. Our results show that our textual patterns are useful for the task of authorship attribution. |
topic |
integrated syntactic graphs textual patterns authorship attribution authorship verification shortest paths walks syntactic n-grams |
url |
http://www.mdpi.com/1424-8220/16/9/1374 |
work_keys_str_mv |
AT helenagomezadorno automaticauthorshipdetectionusingtextualpatternsextractedfromintegratedsyntacticgraphs AT grigorisidorov automaticauthorshipdetectionusingtextualpatternsextractedfromintegratedsyntacticgraphs AT davidpinto automaticauthorshipdetectionusingtextualpatternsextractedfromintegratedsyntacticgraphs AT darnesvilarino automaticauthorshipdetectionusingtextualpatternsextractedfromintegratedsyntacticgraphs AT alexandergelbukh automaticauthorshipdetectionusingtextualpatternsextractedfromintegratedsyntacticgraphs |
_version_ |
1725783925385592832 |