Multi-scale structural and mechanical characterisation in bioinspired polyurethane-based pancreatic cancer model

In this work, novel bioinspired polyurethane (PU) scaffolds were fabricated via freeze casting for PU-based Pancreatic Ductal Adenocarcinoma (PDAC) model. In order to reproduce the tumour micro-environment that facilitates cellular kinetics, the PU scaffolds were surface modified with extracellular...

Full description

Bibliographic Details
Main Authors: Jingyi Mo, Nathanael Leung, Priyanka Gupta, Bin Zhu, Hui Xing, Jiao Zhang, Eirini Velliou, Tan Sui
Format: Article
Language:English
Published: Elsevier 2021-11-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S223878542101022X
Description
Summary:In this work, novel bioinspired polyurethane (PU) scaffolds were fabricated via freeze casting for PU-based Pancreatic Ductal Adenocarcinoma (PDAC) model. In order to reproduce the tumour micro-environment that facilitates cellular kinetics, the PU scaffolds were surface modified with extracellular matrix (ECM) proteins including collagen and fibronectin (Col and FN). Synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) techniques were applied to probe structural evolution during in situ mechanical testing. Strains at macroscopic, nano-, and lattice scales were obtained to investigate the effects of ECM proteins and pancreatic cell activities to PU scaffolds. Significant mechanical strengthening across length scales of PU scaffolds was observed in specimens surface modified by FN. A model of stiffness modulation via enhanced interlamellar recruitment is proposed to explain the multi-scale strengthening mechanisms. Understanding multi-scale deformation mechanisms of a series of PU scaffolds opens an opportunity in developing a novel pancreatic cancer model for studying cancer evolution and predicting outcomes of drug/treatments.
ISSN:2238-7854