Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery.

Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and e...

Full description

Bibliographic Details
Main Authors: Shan-e-Ahmed Raza, Hazel K Smith, Graham J J Clarkson, Gail Taylor, Andrew J Thompson, John Clarkson, Nasir M Rajpoot
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4043671?pdf=render
Description
Summary:Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefore, in this work, instead of using stress indices, information from thermal and visible light imagery was combined along with machine learning techniques to identify regions of canopy showing a response to soil water deficit. Thermal and visible light images of a spinach canopy with different levels of soil moisture were captured. Statistical measurements from these images were extracted and used to classify between canopies growing in well-watered soil or under soil moisture deficit using Support Vector Machines (SVM) and Gaussian Processes Classifier (GPC) and a combination of both the classifiers. The classification results show a high correlation with soil moisture. We demonstrate that regions of a spinach crop responding to soil water deficit can be identified by using machine learning techniques with a high accuracy of 97%. This method could, in principle, be applied to any crop at a range of scales.
ISSN:1932-6203