Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning
<p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells derived from adipose tissue (ADSC) are multipotent stem cells, originated from the vascular-stromal compartment of fat tissue. ADSC are used as an alternative cell source for many different cell therapies, howe...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2011-01-01
|
Series: | Journal of Translational Medicine |
Online Access: | http://www.translational-medicine.com/content/9/1/10 |
id |
doaj-e47b9895deaf414bac99d1a3016092a7 |
---|---|
record_format |
Article |
spelling |
doaj-e47b9895deaf414bac99d1a3016092a72020-11-25T00:55:15ZengBMCJournal of Translational Medicine1479-58762011-01-01911010.1186/1479-5876-9-10Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioningKalinina NataliaStarostina EkaterinaEfimenko AnastasiaStolzing Alexandra<p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells derived from adipose tissue (ADSC) are multipotent stem cells, originated from the vascular-stromal compartment of fat tissue. ADSC are used as an alternative cell source for many different cell therapies, however in ischemic cardiovascular diseases the therapeutic benefit was modest. One of the reasons could be the use of autologous aged ADSC, which recently were found to have impaired functions. We therefore analysed the effects of age on age markers and angiogenic properties of ADSC. Hypoxic conditioning was investigated as a form of angiogenic stimulation.</p> <p>Methods</p> <p>ADSC were harvested from young (1-3 month), adult (12 month) and aged (18-24 month) mice and cultured under normoxic (20%) and hypoxic (1%) conditions for 48 h. Differences in proliferation, apoptosis and telomere length were assessed in addition to angiogenic properties of ADSC.</p> <p>Results</p> <p>Proliferation potential and telomere length were decreased in aged ADSC compared to young ADSC. Frequency of apoptotic cells was higher in aged ADSC. Gene expression of pro-angiogenic factors including vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and hepatic growth factor (HGF) were down-regulated with age, which could be restored by hypoxia. Transforming growth factor (TGF-β) increased in the old ADSC but was reduced by hypoxia.</p> <p>Expression of anti-angiogenic factors including thrombospondin-1 (TBS1) and plasminogen activator inhibitor-1 (PAI-1) did increase in old ADSC, but could be reduced by hypoxic stimulation. Endostatin (ENDS) was the highest in aged ADSC and was also down-regulated by hypoxia. We noted higher gene expression of proteases system factors like urokinase-type plasminogen activator receptor (uPAR), matrix metalloproteinases (MMP2 and MMP9) and PAI-1 in aged ADSC compared to young ADSC, but they decreased in old ADSC. Tube formation on matrigel was higher in the presence of conditioned medium from young ADSC in comparison to aged ADSC.</p> <p>Conclusions</p> <p>ADSC isolated from older animals show changes, including impaired proliferation and angiogenic stimulation. Angiogenic gene expression can be partially be improved by hypoxic preconditioning, however the effect is age-dependent. This supports the hypothesis that autologous ADSC from aged subjects might have an impaired therapeutic potential.</p> http://www.translational-medicine.com/content/9/1/10 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kalinina Natalia Starostina Ekaterina Efimenko Anastasia Stolzing Alexandra |
spellingShingle |
Kalinina Natalia Starostina Ekaterina Efimenko Anastasia Stolzing Alexandra Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning Journal of Translational Medicine |
author_facet |
Kalinina Natalia Starostina Ekaterina Efimenko Anastasia Stolzing Alexandra |
author_sort |
Kalinina Natalia |
title |
Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning |
title_short |
Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning |
title_full |
Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning |
title_fullStr |
Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning |
title_full_unstemmed |
Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning |
title_sort |
angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning |
publisher |
BMC |
series |
Journal of Translational Medicine |
issn |
1479-5876 |
publishDate |
2011-01-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells derived from adipose tissue (ADSC) are multipotent stem cells, originated from the vascular-stromal compartment of fat tissue. ADSC are used as an alternative cell source for many different cell therapies, however in ischemic cardiovascular diseases the therapeutic benefit was modest. One of the reasons could be the use of autologous aged ADSC, which recently were found to have impaired functions. We therefore analysed the effects of age on age markers and angiogenic properties of ADSC. Hypoxic conditioning was investigated as a form of angiogenic stimulation.</p> <p>Methods</p> <p>ADSC were harvested from young (1-3 month), adult (12 month) and aged (18-24 month) mice and cultured under normoxic (20%) and hypoxic (1%) conditions for 48 h. Differences in proliferation, apoptosis and telomere length were assessed in addition to angiogenic properties of ADSC.</p> <p>Results</p> <p>Proliferation potential and telomere length were decreased in aged ADSC compared to young ADSC. Frequency of apoptotic cells was higher in aged ADSC. Gene expression of pro-angiogenic factors including vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and hepatic growth factor (HGF) were down-regulated with age, which could be restored by hypoxia. Transforming growth factor (TGF-β) increased in the old ADSC but was reduced by hypoxia.</p> <p>Expression of anti-angiogenic factors including thrombospondin-1 (TBS1) and plasminogen activator inhibitor-1 (PAI-1) did increase in old ADSC, but could be reduced by hypoxic stimulation. Endostatin (ENDS) was the highest in aged ADSC and was also down-regulated by hypoxia. We noted higher gene expression of proteases system factors like urokinase-type plasminogen activator receptor (uPAR), matrix metalloproteinases (MMP2 and MMP9) and PAI-1 in aged ADSC compared to young ADSC, but they decreased in old ADSC. Tube formation on matrigel was higher in the presence of conditioned medium from young ADSC in comparison to aged ADSC.</p> <p>Conclusions</p> <p>ADSC isolated from older animals show changes, including impaired proliferation and angiogenic stimulation. Angiogenic gene expression can be partially be improved by hypoxic preconditioning, however the effect is age-dependent. This supports the hypothesis that autologous ADSC from aged subjects might have an impaired therapeutic potential.</p> |
url |
http://www.translational-medicine.com/content/9/1/10 |
work_keys_str_mv |
AT kalininanatalia angiogenicpropertiesofagedadiposederivedmesenchymalstemcellsafterhypoxicconditioning AT starostinaekaterina angiogenicpropertiesofagedadiposederivedmesenchymalstemcellsafterhypoxicconditioning AT efimenkoanastasia angiogenicpropertiesofagedadiposederivedmesenchymalstemcellsafterhypoxicconditioning AT stolzingalexandra angiogenicpropertiesofagedadiposederivedmesenchymalstemcellsafterhypoxicconditioning |
_version_ |
1725231211009277952 |