Parkinson's disease diffusion MRI is not affected by acute antiparkinsonian medication

Objective: A prior longitudinal study demonstrates that free-water diffusion magnetic resonance imaging (dMRI) tracks progression in the substantia nigra (Ofori et al., 2015b). Here, we test the acute effects of antiparkinsonian medication on this established imaging progression marker for the first...

Full description

Bibliographic Details
Main Authors: Jae Woo Chung, Roxana G. Burciu, Edward Ofori, Priyank Shukla, Michael S. Okun, Christopher W. Hess, David E. Vaillancourt
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:NeuroImage: Clinical
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213158217300463
Description
Summary:Objective: A prior longitudinal study demonstrates that free-water diffusion magnetic resonance imaging (dMRI) tracks progression in the substantia nigra (Ofori et al., 2015b). Here, we test the acute effects of antiparkinsonian medication on this established imaging progression marker for the first time. Methods: Fifteen PD patients underwent dMRI OFF and ON-medication one day apart. ON-medication, patients were tested approximately 45 min after their usual dose of antiparkinsonian medication. OFF-medication, patients were tested after not taking antiparkinsonian medication for >12 h. OFF and ON-medication was counter-balanced across subjects. For dMRI, we computed free-water and free-water corrected fractional anisotropy (FAt) within the following regions: caudate, putamen, substantia nigra, and subthalamic nucleus. Results: ON-medication significantly reduced parkinsonian motor symptoms compared with OFF-medication (p < 0.001). dMRI measures (free-water and FAt) were not different between the OFF and ON-medication conditions. Conclusions: Administration of an acute does of anti-parkinsonian medication in PD does not affect free-water and FAt in key nigrostriatal structures. Free-water and FAt biomarkers reflect the chronic state of the nigrostriatal circuit, and therefore are potential viable biomarkers for disease-modifying therapeutic studies in PD.
ISSN:2213-1582