Long Term and Large-Scale Continuous Studies on Zinc(II) Sorption and Desorption on Hybrid Pectin-Guar Gum Biosorbent

Pectin-guar gum biosorbent was tested for zinc(II) ions removal in column process. Sorption–desorption experiments were performed in laboratory and at larger scale. The breakthrough and elution curves were obtained for various conditions. The Bed Depth Service Time model was tested for uti...

Full description

Bibliographic Details
Main Authors: Agata Jakóbik-Kolon, Joanna Bok-Badura, Andrzej Milewski, Krzysztof Karoń
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/11/1/96
Description
Summary:Pectin-guar gum biosorbent was tested for zinc(II) ions removal in column process. Sorption–desorption experiments were performed in laboratory and at larger scale. The breakthrough and elution curves were obtained for various conditions. The Bed Depth Service Time model was tested for utility in data estimation. Possibility of sorbent reuse and its lifetime was examined in 20 repeated sorption–desorption cycles. Finally, tests were repeated for real wastewater from galvanizing plant, giving satisfactory results. The effectiveness of Zn(II) sorption happened to be dependent on process parameters; tests have proved that it increased with increasing bed height and with decreasing flow rate or grain size. For an initial zinc concentration of 30 mg/L, even 2096 mL of zinc solution could be purified in small scale experiment (2 g of fine grain sorbent and flow rate 60 mL/h) or 5900 L in large-scale (16 kg of large grain sorbent and flow rate 45 L/h). This allowed for 40-fold or 49-fold zinc increases in concentration in one sorption–desorption cycle. The most successful results are meant that at least 20 sorption–desorption cycles could be performed on one portion of biosorbent without loss of its effectiveness, large-scale tests for real wastewater from galvanizing plant gave satisfactory results, and that the form and mechanical stability of our sorbent is suitable for column usage with flow rates applicable in industry.
ISSN:2073-4360