Genetic Variant rs755622 Regulates Expression of the Multiple Sclerosis Severity Modifier D-Dopachrome Tautomerase in a Sex-Specific Way

Multiple sclerosis (MS) is a sex-specific autoimmune disease involving central nervous system. Previous studies determined that macrophage migration inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (DDT) sex-specifically affect MS progression. Moreover, other studies reported that...

Full description

Bibliographic Details
Main Authors: Zhijie Han, Jiaojiao Qu, Jiehong Zhao, Xiao Zou
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2018/8285653
Description
Summary:Multiple sclerosis (MS) is a sex-specific autoimmune disease involving central nervous system. Previous studies determined that macrophage migration inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (DDT) sex-specifically affect MS progression. Moreover, other studies reported that rs755622 polymorphism in promoter region of MIF gene is associated with risk of MS and affects the promoter activity to regulate MIF expression in a sex-specific way. Given that MIF and DDT share a part of promoter sequence, we surmise that rs755622 can also regulate DDT expression in a sex-specific way. However, this has not yet been studied. Here, we used five large-scale expression quantitative trait loci (eQTLs) and two RNA-seq datasets from brain and blood to assess the potential influence of rs755622 variant on expression of DDT in different genders by the linear regression and differential expression analysis. The results show that the minor allele frequency of rs755622 and expression of DDT are significantly increased in males for MS subjects and this minor allele variant can significantly upregulate DDT expression for males but not females, which suggests that the regulation of DDT expression level by rs755622 can affect MS progression in males. These findings further support and expand conclusions of previous studies and may help to better understand the mechanisms of MS.
ISSN:2314-6133
2314-6141