Nuclear entry of activated MAPK is restricted in primary ovarian and mammary epithelial cells.

<h4>Background</h4>The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription.<h4>Principal findings</h...

Full description

Bibliographic Details
Main Authors: Elizabeth R Smith, Kathy Qi Cai, Jennifer L Smedberg, Melina M Ribeiro, Malgorzata E Rula, Carolyn Slater, Andrew K Godwin, Xiang-Xi Xu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2010-02-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20174585/pdf/?tool=EBI
Description
Summary:<h4>Background</h4>The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription.<h4>Principal findings</h4>Here, however, we observe that in primary cultures of breast and ovarian epithelial cells, phosphorylation and activation of ERK1/2 are disassociated from nuclear translocalization and transcription of downstream targets, such as c-Fos, suggesting that nuclear translocation is limited in primary cells. Accordingly, in import assays in vitro, primary cells showed a lower import activity for ERK1/2 than cancer cells, in which activated MAPK readily translocated into the nucleus and activated c-Fos expression. Primary cells express lower levels of nuclear pore complex proteins and the nuclear transport factors, importin B1 and importin 7, which may explain the limiting ERK1/2 import found in primary cells. Additionally, reduction in expression of nucleoporin 153 by siRNA targeting reduced ERK1/2 nuclear activity in cancer cells.<h4>Conclusion</h4>ERK1/2 activation is dissociated from nuclear entry, which is a rate limiting step in primary cells and in vivo, and the restriction of nuclear entry is disrupted in transformed cells by the increased expression of nuclear pores and/or nuclear transport factors.
ISSN:1932-6203